Our IP is hosted on Silicon Hub, letting you download trial versions instantly. Browse our IP below, or find out more.
The MXL4254A is a silicon proven Quad Gigabit SerDes implemented in digital CMOS technology. Each of the four channels supports data rate up to 4.25 Gbps. It is compatible with router-backplane links, PCI Express, SATA, RapidIO, 10 Gbps Ethernet (XAUI), FibreChannel, SFI-5, SPI-5, and other communication applications.
The MXL-LVDS-MIPI-RX is a high-frequency, low-power, low-cost, source-synchronous, Physical Layer that supports the MIPI® Alliance Standard for D-PHY and compatible with the TIA/EIA-644 LVDS standard. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The IP is configured as a MIPI slave and consists of 5 lanes: 1 Clock lane and 4 data lanes, which make it suitable for display serial interface applications (DSI). The High-Speed signals have a low voltage swing, while Low-Power signals have large swing. High-Speed functions are used for High-Speed Data traffic while low power functions are mostly used for control.
The MXL-SR-LVDS is a high performance 4-channel LVDS Serializer implemented using digital CMOS technology. Both the serial and parallel data are organized into four channels. The parallel data width is programmable, and the input clock is 25MHz to 165MHz. The Serializer is highly integrated and requires no external components. It employs optional pre-emphasis to enable transmission over a longer distance while achieving low BER. The circuit is designed in a modular fashion and desensitized to process variations. This facilitates process migration, and results in a robust design.
The Mixel MIPI D-PHY IP (MXL-DPHY) is a high-frequency low-power, low cost, source-synchronous, physical layer compliant with the MIPI® Alliance Standard for D-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) Although primarily used for connecting cameras and display devices to a core processor, this MIPI PHY can also be used for many other applications. It is used in a master-slave configuration, where high-speed signals have a low voltage swing, and low-power signals have large swing. High-speed functions are used for high-speed data traffic while low-power functions are mostly used for control. The D-PHY is partitioned into a Digital Module – CIL (Control and Interface Logic) and a Mixed Signal Module. It is provided as a combination of Soft IP views (RTL, and STA Constraints) for Digital Module, and Hard IP views (GDSII/CDL/LEF/LIB) for the Mixed Signal Module. This unique offering of Soft and Hard IP permits architectural design flexibility and seamless implementation in customer-specific design flow. The CIL module interfaces with the protocol layer and determines the global operation of the lane module. The interface between the D-PHY and the protocol is called the PHY-Protocol Interface (PPI). During normal operation, the data lane switches between low-power mode and high-speed mode. Bidirectional lanes can also switch communication direction. The change of operating mode or direction requires enabling and disabling certain electrical functions. These enable and disable events do not cause glitches on the lines that would otherwise result in detections of incorrect signal levels. Therefore, all mode and direction changes occur smoothly, ensuring proper detection of the line signals. Mixel’s D-PHY is a complete PHY, silicon-proven at multiple foundries and multiple nodes. This MIPI PHY is fully integrated and has analog circuitry, digital, and synthesizable logic. Our D-PHY is built to support the MIPI Camera Serial Interface (CSI) and Display Serial Interface (DSI) using the PHY Protocol Interface (PPI). Mixel has provided this IP in many different configurations to accommodate different applications. The Universal Lane configuration can be used to support any allowed use-case, while other configurations are optimized for many different use cases such as Transmit only, Receive only, DSI, CSI, TX+ and RX+. Both TX+ and RX+ configurations support full-speed loopback operation without the extra area associated with a universal lane configuration.
The MXL-LVDS-DPHY-DSI-TX is a combo PHY that consists of a high-frequency low-power, low-cost, source-synchronous, Physical Layer supporting the MIPI® Alliance Standard for D-PHY and a high performance 4-channel LVDS Serializer implemented using digital CMOS technology. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) In LVDS mode, both the serial and parallel data are organized into 4 channels. The parallel data is 7 bits wide per channel. The input clock is 25MHz to 150MHz. The serializer is highly integrated and requires no external components. The circuit is designed in a modular fashion and desensitized to process variations. This facilitates process migration, and results in a robust design.
The Mixel MIPI C/D-PHY combo IP (MXL-CPHY-DPHY) is a high-frequency low-power, low cost, physical layer compliant with the MIPI® Alliance Standard for C-PHY and D-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The PHY can be configured as a MIPI Master or MIPI Slave, supporting camera interface CSI-2 v1.2 or display interface DSI v1.3 applications in the D-PHY mode. It also supports camera interface CSI-2 v1.3 and display interface DSI-2 v1.0 applications in the C-PHY mode. The high-speed signals have a low voltage swing, while low-power signals have large swing. High-Speed functions are used for high-speed data traffic while low-power functions are mostly used for control. The C-PHY is based on 3-Phase symbol encoding technology, delivering 2.28 bits per symbol over three-wire trios, operating with a symbol rate range of 80 to 4500 Msps per lane, which is the equivalent of about 182.8 to 10260 Mbps per lane. The D-PHY supports a bit rate range of 80 to 1500 Mbps per Lane without deskew calibration, and up to 4500 Mbps with deskew calibration. The low-power mode and escape mode are the same in both the D-PHY and C-PHY modes. To minimize EMI, the drivers for low-power mode are slew-rate controlled and current limited. The data rate in low-power mode is 10 Mbps. For a fixed clock frequency, the available data capacity of a PHY configuration can be increased by using more lanes. Effective data throughput can be reduced by employing burst mode communication. Mixel’s C-PHY/D-PHY combo is a complete PHY, silicon-proven at multiple foundries and multiple nodes. The C/D-PHY is fully integrated and has analog circuitry, digital, and synthesizable logic.
The MXL-DS-LVDS is a high performance 4-channel LVDS Deserializer implemented using digital CMOS technology. Both the serial and parallel data are organized into four channels. The parallel data can be 7 or 10 bits wide per channel. The input clock is 25MHz to 165MHz. The De-serializer is highly integrated and requires no external components. Great care was taken to insure matching between the Data and Clock channels to maximize the deserializer margin. The circuit is designed in a modular fashion and desensitized to process variations. This facilitates process migration, and results in a robust design.
The Mixel MIPI M-PHY (MXL-MPHY) is a high-frequency low-power, Physical Layer IP that supports the MIPI® Alliance Standard for M-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The IP can be used as a physical layer for many applications, connecting flash memory-based storage, cameras and RF subsystems, and for providing chip-to-chip inter-processor communications (IPC). It supports MIPI UniPro and JEDEC Universal Flash Storage (UFS) standard. By using efficient BURST mode operation with scalable speeds, significant power savings can be obtained. Selection of signal slew rate and amplitude allows reduction of EMI/RFI, while maintaining low bit error rates.
The Mixel MIPI C-PHY IP (MXL-CPHY) is a high-frequency, low-power, low cost, physical layer. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The C-PHY configuration consists of up to three lane modules and is based on 3-Phase symbol encoding technology, delivering 2.28 bits per symbol over three-wire trios and targeting a maximum rate of 2.5 Gsps, 5.7Gbps. The C-PHY is partitioned into a digital module – CIL (Control and Interface Logic) and a mixed-signal module. The PHY IP is provided as a combination of soft IP views (RTL, and STA Constraints) for the digital module, and hard IP views (GDSII/CDL/LEF/LIB) for the mixed-signal module. This unique offering of both soft and hard IP permits architectural design flexibility and seamless implementation in customer-specific design flow. The CIL module interfaces with the protocol layer and determines the global operation of the module. The interface between the PHY and the protocol is using the PHY-Protocol Interface (PPI). The mixed-signal module includes high-speed signaling mode for fast-data traffic and low-power signaling mode for control purposes. During normal operation, a lane switches between low-power and high-speed mode. Bidirectional lanes can also switch communication direction. The change of operating mode or direction requires enabling and disabling of certain electrical functions. These enable and disable events do not cause glitches on the lines that would result in a detection of incorrect signal levels. All mode and direction changes are smooth to always ensure a proper detection of the line signals. Mixel’s C-PHY is a complete PHY, silicon-proven at multiple foundries and multiple nodes. It is built to support the MIPI Camera Serial Interface (CSI) and Display Serial Interface (DSI).
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to evaluate IP, download trial versions and datasheets, and manage your evaluation workflow!