Is this your business? Claim it to manage your IP and profile
The GNSS VHDL Library is a high-performance, sophisticated library developed to streamline the integration of satellite navigation capabilities within digital hardware systems. Tailored for flexibility and adaptability, this library facilitates various GNSS systems, including GPS, GLONASS, and Galileo. Its design enables effective signal processing and navigation solutions through dedicated VHDL modules. A notable aspect of the GNSS VHDL Library is its compatibility with multiple hardware platforms and architectures, which include SPARC V8 and RISC-V systems. It encompasses modules like fast search engines, Viterbi decoders, and self-test units, allowing developers to customize and refine their application according to specific needs. The library supports a range of configurations: it can be tailored to manage different numbers of channels, frequencies, and system modules as specified by user requirements. By implementing a single, comprehensive configuration file, it minimizes the need for repetitive customization across different systems, which can significantly decrease development times and costs.
The Satellite Navigation SoC Integration by GNSS Sensor Limited is engineered to optimize the incorporation of satellite navigation capabilities directly into system-on-chip designs. This product is notable for its compatibility with various satellite systems including GPS, GLONASS, and Galileo, featuring independent fast search engines for each navigation protocol. This integration offers substantial flexibility, allowing the navigation system to operate efficiently across a broad spectrum of platforms. The SoC integration includes a distinctive set of features designed to cater to the requirements of modern digital hardware environments. It supports a wide array of architectures, notably those based on RISC-V and SPARC V8, as well as FPGA environments, which are testament to its adaptability in different technological frameworks. This flexibility is further bolstered by its use of universal bus interfaces such as AMBA and SPI, facilitating integration without necessitating extensive design modifications. Moreover, this SoC solution supports a comprehensive range of frequency bands and channels, ensuring robust satellite tracking and data acquisition capabilities. Its architecture allows for maximum independence from CPU platforms, providing a single configuration file to manage various system needs, thus reducing the complexity and development costs associated with integrating navigation functions into bespoke silicon solutions.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to evaluate IP, download trial versions and datasheets, and manage your evaluation workflow!
To evaluate IP you need to be logged into a buyer profile. Select a profile below, or create a new buyer profile for your company.