All IPs > Multimedia > Camera Interface
The camera interface semiconductor IP category within the Silicon Hub catalog offers a wide range of advanced solutions tailored to streamline the integration of camera systems into multimedia devices. These semiconductor IPs are crucial for enhancing image capture and processing capabilities in various applications, from consumer electronics to automotive systems. As the demand for high-quality imaging in devices such as smartphones, tablets, drones, and in-vehicle infotainment systems continues to rise, robust and efficient camera interface IPs have become essential components in the semiconductor ecosystem.
Camera interface semiconductor IPs are designed to manage the complex interaction between image sensors and digital processing units found in modern electronic devices. These IPs support a variety of camera interface standards such as MIPI CSI-2, parallel interfaces, and LVDS, providing flexible integration options for different sensor types and processing architectures. They help in optimizing power consumption, reducing latency, and ensuring high data throughput, enabling smooth and responsive multimedia experiences for end users.
In addition to technical efficiency, camera interface semiconductor IPs also play a pivotal role in reducing development timelines and costs. By providing pre-designed and verified modules, these IPs significantly cut down on the engineering resources required to develop and validate complex camera systems from scratch. This acceleration of product development cycles allows companies to bring innovative devices to market faster, maintaining competitive advantage in the fast-paced consumer electronics and automotive markets.
Furthermore, camera interface semiconductor IPs contribute to the scalability and future-readiness of multimedia devices. As emerging technologies and higher resolutions continue to push the boundaries of image capture and processing, having a modular and adaptable IP solution enables manufacturers to upgrade or modify their camera capabilities without complete system overhauls. This flexibility is especially beneficial in automotive applications, where advanced driver-assistance systems (ADAS) and autonomous vehicle technologies are advancing rapidly, necessitating reliable and high-performance camera interfaces.
Overview: Lens distortion is a common issue in cameras, especially with wide-angle or fisheye lenses, causing straight lines to appear curved. Radial distortion, where the image is expanded or reduced radially from the center, is the most prominent type. Failure to correct distortion can lead to issues in digital image analysis. The solution involves mathematically modeling and correcting distortion by estimating parameters that determine the degree of distortion and applying inverse transformations. Automotive systems often require additional image processing features, such as de-warping, for front/rear view cameras. The Lens Distortion Correction H/W IP comprises 3 blocks for coordinate generation, data caching, and interpolation, providing de-warping capabilities for accurate image correction. Specifications: Maximum Resolution: o Image: 8MP (3840x2160) o Video: 8MP @ 60fps Input Formats: YUV422 - 8 bits Output Formats: o AXI: YUV420, YUV422, RGB888 - 8 bits Interface: o ARM® AMBA APB BUS interface for system control o ARM® AMBA AXI interface for data Features: Programmable Window Size and Position Barrel Distortion Correction Support Wide Angle Correction up to 192° De-warping Modes: o Zoom o Tilt o Pan o Rotate o Side-view Programmable Parameters: o Zoom Factor: controls Distance from the Image Plane to the Camera (Sensor)
Overview: RCCC and RCCB in ISP refer to Red and Blue Color Correction Coefficients, respectively. These coefficients are utilized in Image Signal Processing to enhance red and blue color components for accurate color reproduction and balance. They are essential for color correction and calibration to ensure optimal image quality and color accuracy in photography, video recording, and visual displays. The IP is designed to process RCCC pattern data from sensors, where green and blue pixels are substituted by Clear pixel, resulting in Red or Clear (Monochrome) format after demosaicing. It supports real-time processing with Digital Video Port (DVP) format similar to CIS output. RCCB sensors use Clear pixels instead of Green pixels, enhancing sensitivity and image quality in low-light conditions compared to traditional RGB Bayer sensors. LOTUS converts input from RCCB sensors to a pattern resembling RGB Bayer sensors, providing DVP format interface for real-time processing. Features: Maximum Resolution: 8MP (3840h x 2160v) Maximum Input Frame Rate: 30fps Low Power Consumption RCCC/RCCB Pattern demosaicing
Overview: Human eyes have a wider dynamic range than CMOS image sensors (CIS), leading to differences in how objects are perceived in images or videos. To address this, CIS and IP algorithms have been developed to express a higher range of brightness. High Dynamic Range (HDR) based on Single Exposure has limitations in recreating the Saturation Region, prompting the development of Wide Dynamic Range (WDR) using Multi Exposure images. The IP supports PWL companding mode or Linear mode to perform WDR. It analyzes the full-image histogram for global tone mapping and maximizes visible contrast in local areas for enhanced dynamic range. Specifications: Maximum Resolution: o Image: 13MP o Video: 13MP @ 60fps (Input/Output) Input Formats (Bayer): o HDR Linear Mode: Max raw 28 bits o Companding Mode: Max PWL compressed raw 24 bits Output Formats (Bayer): 14 bits Interface: o ARM® AMBA APB BUS interface for ISP system control o ARM® AMBA AXI interface for data o Video data stream interface Features: Global Tone Mapping based on histogram analysis o Adaptive global tone mapping per Input Images Local Tone Mapping for adaptive contrast enhancement Real-Time WDR Output Low Power Consumption and Small Gate Count 28-bit Sensor Data Interface
Overview: RGB-IR features in ISP enable the capture and processing of Red, Green, Blue, and Infrared (IR) light data in an Image Signal Processing (ISP) system. This functionality enhances image quality by extracting additional information not visible to the human eye in standard RGB images. By integrating IR and RGB data into the demosaic processing pipeline, the ISP can enhance scene analysis, object detection, and image clarity in applications such as surveillance, automotive, and security systems. Features: IR Core - 4Kx1EA: 4K Maximum Resolution: 3840h x 2160v @ 30fps IR Color Correction 3.99x support IR data Full-size output / 1/4x subsample support (Pure IR Pixel data) Only RGB-IR 4x4 pattern support IR data Crop support
The KL730 AI SoC is equipped with a state-of-the-art third-generation reconfigurable NPU architecture, delivering up to 8 TOPS of computational power. This innovative architecture enhances computational efficiency, particularly with the latest CNN networks and transformer applications, while reducing DDR bandwidth demands. The KL730 excels in video processing, offering support for 4K 60FPS output and boasts capabilities like noise reduction, wide dynamic range, and low-light imaging. It is ideal for applications such as intelligent security, autonomous driving, and video conferencing.
The KL630 AI SoC embodies next-generation AI chip technology with a pioneering NPU architecture. It uniquely supports Int4 precision and transformer networks, offering superb computational efficiency combined with low power consumption. Utilizing an ARM Cortex A5 CPU, it supports a range of AI frameworks and is built to handle scenarios from smart security to automotives, providing robust capability in both high and low light conditions.
Wasiela's DVB-S2-LDPC-BCH provides a sophisticated forward error correction system designed for digital video broadcasting applications, particularly suited for satellite transmission. This product combines low-density parity-check (LDPC) codes with Bose Chaudhuri Hocquenghem (BCH) codes to achieve quasi error-free operation, operating effectively close to the Shannon limit.<br><br>The implementation boasts an irregular parity check matrix and layered decoding to increase decoding efficiency. The minimum sum algorithm is utilized for optimal performance with soft decision decoding capabilities that allow for higher error correction. This product also complies with ETSI EN 302 307-1 V1.4.1 standards, ensuring high quality and reliability in digital transmission systems.<br><br>Additional functionalities include a BCH decoder adept at correcting multiple errors per codeword, making this solution an ideal choice for ensuring data integrity in demanding satellite communication conditions. Wasiela offers this IP complete with synthesizeable Verilog code, a system model in Matlab, and thorough documentation, ensuring a smooth integration process for any application.
The YouMIPI solution is tailored for seamless integration of MIPI CSI and DSI interfaces. Brite's solution manages sensor data conversion to imagery format, along with configurable noise reduction features to minimize EMI impacts. Compliance with the latest MIPI CSI and DSI standards ensures broad application compatibility, supporting multiple image formats for diverse visualization applications. This comprehensive solution focuses on maintaining data integrity while overcoming typical signal interference challenges in high-speed transmission environments.
Replicating the capabilities of its counterpart, the Ultra-High Throughput VESA DSC 1.2b Decoder, stakes strong claims in bandwidth conservation for high-resolution displays. It decodes compressed streams into visually lossless output, crucial for video and display technologies. The decoder supports seamless integration with existing hardware, helping achieve excellent display performance in various environments.
The KL520 AI SoC by Kneron marked a significant breakthrough in edge AI technology, offering a well-rounded solution with notable power efficiency and performance. This chip can function as a host or as a supplementary co-processor to enable advanced AI features in diverse smart devices. It is highly compatible with a range of 3D sensor technologies and is perfectly suited for smart home innovations, facilitating long battery life and enhanced user control without reliance on external cloud services.
Kneron's KL530 introduces a modern heterogeneous AI chip design featuring a cutting-edge NPU architecture with support for INT4 precision. This chip stands out with its high computational efficiency and minimized power usage, making it ideal for a variety of AIoT and other applications. The KL530 utilizes an ARM Cortex M4 CPU, bringing forth powerful image processing and multimedia compression capabilities, while maintaining a low power footprint, thus fitting well with energy-conscious devices.
The MIPI Video Processing Pipeline leverages the MIPI standards to enable efficient video data processing tailored for embedded FPGA platforms. This comprehensive solution supports key video protocols like Avalon and AXI-4 Streaming, adapting easily to various sensor video formats and frame rates. The pipeline handles resolutions reaching 4K at 60 frames per second, catering to high-definition video requirements in consumer electronics and professional imaging markets. With its scalable architecture, it allows multiple pixels per clock processing without compromising on performance, aiding in resource optimization. StreamDSP's pipeline supports customizable stages such as defective pixel correction, color correction, and chroma resampling, each pivotal in achieving high-quality video output. This flexibility ensures the IP can be utilized in diverse applications ranging from automotive infotainment systems to industrial imaging setups.
In production since 2017 with top-tier manufacturers, Uniquify’s Video Display Technology is engineered for 4K and 8K UHD TV applications, harnessing an array of advanced hardware-assisted image enhancement algorithms. Implementations include AI-enabled super-resolution, high dynamic range imaging, and color compensation techniques that significantly elevate image quality while maintaining cost efficiency. The technology incorporates Adaptive Color Compensation (ACC) and Dynamic Capacitance Compensation (DCC) to provide consistency in luminance response and minimize motion blur—critical attributes for modern display systems. These features ensure superior picture quality by maintaining consistent gamma curves for primary colors and eliminating common visual artifacts in fast-moving scenes. Equipped with Uniquify's proprietary algorithms, such as those for DeMura and Dither processing, the technology offers high flexibility in enhancing color quality and contrast. This suite of image processing capabilities ensures that the Video Display Technology remains at the forefront of innovation for high-definition consumer electronics, making it ideal for partnerships with leading display manufacturers.
The WDR Core provides an advanced approach to wide dynamic range imaging by controlling image tone curves automatically based on scene analysis. This core is adept at ensuring that both shadows and highlights are appropriately compensated, thus maintaining image contrast and true color fidelity without the reliance on frame memory. Automatic adjustments extend the dynamic range of captured images, providing detailed correction in overexposed and underexposed areas. This capability is vital for environments with variable lighting conditions where traditional gamma corrections might introduce inaccuracies or unnatural visual effects. The core focuses on enhancing the user experience by delivering detailed and balanced images across diverse scenarios. Its versatility is particularly useful in applications like surveillance, where clarity across a range of light levels is critical, and in consumer electronics that require high-quality imaging in varying illumination.
The Advanced Video Transmission Toolkit is a versatile solution for efficiently simulating video transmission processes. It enables users to assess video quality under various transmission conditions using different encoder standards like ITU H.264, H.265, H.266, and AV1. The toolkit includes powerful Forward Error Correction codes like LDPC, Polar, and Turbo Codes, making it valuable for analyzing video over lossy channels typical in wireless communication. Its comprehensive approach helps industries optimize video delivery quality, ensuring higher viewer satisfaction and a more immersive viewing experience.
The Dynamic PhotoDetector (DPD) for smartphone applications by ActLight brings innovative light sensing functionality to mobile devices. Designed to enhance the user experience, this sensor technology integrates seamlessly into smartphones to provide advanced proximity and ambient light detection capabilities using state-of-the-art 3D Time-of-Flight (ToF) camera technology. By enabling precise detection of nearby objects, these sensors facilitate automatic adjustments of the smartphone's screen, enhancing convenience and efficiency for the user. ActLight's DPD also supports optimal viewing conditions through its ambient light sensing capabilities, offering true visual brilliance by accurately measuring ambient light levels. This feature enables automatic screen brightness adjustments, ensuring comfort in varying lighting environments, such as outdoor settings or dim rooms. Moreover, ActLight's 3D sensor technology expands smartphone capabilities into augmented and virtual reality realms, offering detailed 3D imaging for photography and interactive experiences. These enhancements position the smartphone at the forefront of innovation, providing users with unparalleled applications in creative and immersive fields.
The Dynamic PhotoDetector (DPD) for smartphone applications by ActLight brings innovative light sensing functionality to mobile devices. Designed to enhance the user experience, this sensor technology integrates seamlessly into smartphones to provide advanced proximity and ambient light detection capabilities using state-of-the-art 3D Time-of-Flight (ToF) camera technology. By enabling precise detection of nearby objects, these sensors facilitate automatic adjustments of the smartphone's screen, enhancing convenience and efficiency for the user. ActLight's DPD also supports optimal viewing conditions through its ambient light sensing capabilities, offering true visual brilliance by accurately measuring ambient light levels. This feature enables automatic screen brightness adjustments, ensuring comfort in varying lighting environments, such as outdoor settings or dim rooms. Moreover, ActLight's 3D sensor technology expands smartphone capabilities into augmented and virtual reality realms, offering detailed 3D imaging for photography and interactive experiences. These enhancements position the smartphone at the forefront of innovation, providing users with unparalleled applications in creative and immersive fields.
The HDMI 1.4 Transmitter IP is a silicon-proven core designed to facilitate the integration of HDMI functionalities into system-on-chip (SoC) products. It streamlines the implementation of high-definition multimedia interfaces, reducing the bill of materials cost and saving board space, which is crucial for consumer electronics such as DVD players, Blu-ray players, and audio/video receivers. This IP supports HDMI 1.4 standards and offers features such as HDCP 1.3 encryption, crucial for secure content transmission. It is engineered with built-in self-test capabilities (BIST), which facilitates the diagnostics and assurance of reliable performance standards, making it suitable for extensive application deployments. Ideal for environments demanding robust audio and video delivery, the HDMI 1.4 Transmitter IP ensures devices can handle 3D video formats and Ethernet channel communications within HDMI cables. This integration leads to robust digital connections in audio and visual devices, significantly enhancing multimedia equipment performance.