All IPs > Graphic & Peripheral > Receiver/Transmitter
The Receiver/Transmitter semiconductor IP category is a vital component of the Graphics & Peripheral domain, offering crucial connectivity solutions for a wide range of electronic devices. These IPs are designed to support seamless communication between various hardware elements, ensuring efficient data transfer and processing. As the demand for high-speed data exchange continues to rise, the importance of robust Receiver and Transmitter circuits becomes increasingly evident, making this category indispensable for modern electronics.
Semiconductor IPs in this category are engineered to handle diverse applications, such as integrating peripheral devices like monitors, keyboards, and mice with main computing units. These IPs enable the transmission and reception of data signals through various communication protocols, such as HDMI, USB, and Ethernet, among others. Moreover, they facilitate the translation of these signals into formats that different devices can interpret and utilize effectively, thus enhancing device interoperability and performance.
Products in the Receiver/Transmitter category are crafted to meet the stringent demands of modern graphics and peripheral interfaces. They include transceivers and integrated circuits that are capable of managing high-definition audio and video signals, ensuring that media-rich content is delivered with the highest fidelity and efficiency. Furthermore, these semiconductor IPs are critical in reducing latency and improving data throughput, which are essential for applications such as gaming, streaming, and interactive media.
By leveraging the latest advancements in semiconductor technology, the Receiver/Transmitter IPs help manufacturers create devices that offer exceptional connectivity while maintaining power efficiency. This makes them ideal for developing the next generation of smart gadgets, consumer electronics, and computing peripherals, ensuring that they remain competitive in a rapidly evolving technological landscape. As such, these IPs play a pivotal role in shaping the future of connected devices, offering both enhanced performance and greater flexibility in design.
LVDS Interfaces by Silicon Creations are designed to facilitate high-speed and reliable data transmission. These interfaces are suitable for applications requiring efficient chip-to-chip communication, handling data rates up to 3.3Gbps. Featuring bi-directional capabilities and superb programmability, they can support a variety of standards and are engineered to deliver optimal signal integrity. Silicon Creations' use of robust PLLs and adaptive CDR technologies ensures the interfaces provide stable and precise alignment across all lanes. The impressive flexibility and performance of these interfaces make them ideal for a wide spectrum of modern digital applications.
KPIT provides state-of-the-art solutions for vehicle diagnostics and aftersales service, essential for the maintenance of software-intensive vehicles. The iDART framework offers comprehensive diagnostic functions and enhances service operations through AI-guided systems. This framework facilitates the transition to a unified, future-proof diagnostic ecosystem, reducing downtime and ensuring optimal vehicle performance. KPIT's solutions streamline complex diagnostic processes, making vehicles easier to manage and repair over their lifespans, enhancing customer satisfaction and loyalty.
Origin E1 neural engines are expertly adjusted for networks that are typically employed in always-on applications. These include devices such as home appliances, smartphones, and edge nodes requiring around 1 TOPS performance. This focused optimization makes the E1 LittleNPU processors particularly suitable for cost- and area-sensitive applications, making efficient use of energy and reducing processing latency to negligible levels. The design also incorporates a power-efficient architecture that maintains low power consumption while handling always-sensing data operations. This enables continuous sampling and analysis of visual information without compromising on efficiency or user privacy. Additionally, the architecture is rooted in Expedera's packet-based design which allows for parallel execution across layers, optimizing performance and resource utilization. Market-leading efficiency with up to 18 TOPS/W further underlines Origin E1's capacity to deliver outstanding AI performance with minimal resources. The processor supports standard and proprietary neural network operations, ensuring versatility in its applications. Importantly, it accommodates a comprehensive software stack that includes an array of tools such as compilers and quantizers to facilitate deployment in diverse use cases without requiring extensive re-designs. Its application has already seen it deployed in over 10 million devices worldwide, in various consumer technology formats.
Archband Labs offers a PDM-to-PCM Converter that excels in translating Pulse Density Modulated (PDM) audio signals into Pulse Code Modulated (PCM) format. This conversion is crucial in audio signal processing where digital formats require conversions for accurate playback or further audio processing. Ideal for modern multimedia systems and portable audio devices, the PDM-to-PCM Converter provides high fidelity in signal conversion, ensuring sound quality is preserved during the process. This IP is highly efficient, making it perfect for applications where power conservation is important, such as battery-powered gadgets and smart wearables. Its compact design provides easy integration into existing systems, facilitating upgrades without significant redesigns. With reliable performance, this converter supports the growing demand for adaptable and high-efficiency audio processing solutions, aiding engineers in achieving cutting-edge audio clarity.
Designed for high-performance environments such as data centers and automotive systems, the Origin E8 NPU cores push the limits of AI inference, achieving up to 128 TOPS on a single core. Its architecture supports concurrent running of multiple neural networks without context switching lag, making it a top choice for performance-intensive tasks like computer vision and large-scale model deployments. The E8's flexibility in deployment ensures that AI applications can be optimized post-silicon, bringing performance efficiencies previously unattainable in its category. The E8's architecture and sustained performance, alongside its ability to operate within strict power envelopes (18 TOPS/W), make it suitable for passive cooling environments, which is crucial for cutting-edge AI applications. It stands out by offering PetaOps performance scaling through its customizable design that avoids penalties typically faced by tiled architectures. The E8 maintains exemplary determinism and resource utilization, essential for running advanced neural models like LLMs and intricate ADAS tasks. Furthermore, this core integrates easily with existing development frameworks and supports a full TVM-based software stack, allowing for seamless deployment of trained models. The expansive support for both current and emerging AI workloads makes the Origin E8 a robust solution for the most demanding computational challenges in AI.
The Aries fgOTN processor family is engineered according to the ITU-T G.709.20 fgOTN standard. This line of processors handles a variety of signals, including E1/T1, FE/GE, and STM1/STM4, effectively monitoring and managing alarms and performance metrics. Aries processors excel at fine-grain traffic aggregation, efficiently channeling fgODUflex traffic across OTN lines to support Ethernet, SDH, PDH client services. Their capacity to map signals to fgODUflex containers, which are then multiplexed into higher order OTN signals, demonstrates their versatility and efficiency. By allowing cascaded configurations with other Aries devices or Apodis processors, Aries products optimize traffic routes through OTN infrastructures, positioning them as essential components in optical networking and next-generation access scenarios.
The Apodis family of Optical Transport Network processors adheres to ITU-T standards, offering a comprehensive suite for signal termination, processing, and multiplexing. Designed to handle both SONET/SDH and Ethernet client services, these processors map signals to Optical Transport Network (OTN), empowering versatile any-port, any-service configurations. Apodis processors are notable for their capacity to support up to 16 client ports and four 10G OTN line ports, delivering bandwidth scalability up to 40G, crucial for wireless backhaul and fronthaul deployments. With a robust, non-blocking OTN switching fabric, Apodis facilitates seamless client-to-line and line-to-line connections while optimally managing network bandwidth. This adaptability makes the Apodis processors an ideal choice for next-generation access networks and optical infrastructures.
The Origin E2 family of NPU cores is tailored for power-sensitive devices like smartphones and edge nodes that seek to balance power, performance, and area efficiency. These cores are engineered to handle video resolutions up to 4K, as well as audio and text-based neural networks. Utilizing Expedera’s packet-based architecture, the Origin E2 ensures efficient parallel processing, reducing the need for device-specific optimizations, thus maintaining high model accuracy and adaptability. The E2 is flexible and can be customized to fit specific use cases, aiding in mitigating dark silicon and enhancing power efficiency. Its performance capacity ranges from 1 to 20 TOPS and supports an extensive array of neural network types including CNNs, RNNs, DNNs, and LSTMs. With impressive power efficiency rated at up to 18 TOPS/W, this NPU core keeps power consumption low while delivering high performance that suits a variety of applications. As part of a full TVM-based software stack, it provides developers with tools to efficiently implement their neural networks across different hardware configurations, supporting frameworks such as TensorFlow and ONNX. Successfully applied in smartphones and other consumer electronics, the E2 has proved its capabilities in real-world scenarios, significantly enhancing the functionality and feature set of devices.
Digital Blocks' UART Serial Communication Controller provides a reliable and efficient solution for synchronous and asynchronous serial data communication. Supporting a range of baud rates, this controller is designed to interface with microprocessors via AMBA buses and can be configured to suit various communication protocols and settings. The IP core's flexibility and robust performance make it suitable for use in embedded systems, industrial control, and any application requiring dependable serial communication.
XDS offers a specialized platform for the design and simulation of RF and microwave circuits. Its precision-focused tools provide detailed insights into electromagnetic performance critical to the development of modern RF systems. XDS excels in modeling the complex interactions inherent in these high-frequency designs, facilitating optimized circuit performance and reliability. With its robust simulation capabilities, XDS empowers designers to visualize and address potential performance challenges before practical implementation. This foresight in design allows for the crafting of circuits that are not only efficient but also resilient to real-world interferences and stresses. Engineers utilizing XDS benefit from its ability to streamline the design process, reducing development time while enhancing product functionality and performance. The tool is a vital asset for those focused on advancing RF technologies and maintaining best-in-class standards in microwave circuit design.
The G-Series Controller is designed for high-speed data processing tasks in graphical and video-intensive applications. It supports JEDEC-compliant GDDR6 for speeds up to 18 Gbps, offering dual channels with integrated automatic retry features and a highly flexible design architecture. Its support for a hardware and software calibration routine ensures accurate performance across platforms. The G-Series solution delivers the throughput needed for AI, ADAS, and advanced gaming technologies, establishing itself as a formidable solution for next-generation high-performance applications.
Origin E6 NPU cores are cutting-edge solutions designed to handle the complex demands of modern AI models, specializing in generative and traditional networks such as RNN, CNN, and LSTM. Ranging from 16 to 32 TOPS, these cores offer an optimal balance of performance, power efficiency, and feature set, making them particularly suitable for premium edge inference applications. Utilizing Expedera’s innovative packet-based architecture, the Origin E6 allows for streamlined multi-layer parallel processing, ensuring sustained performance and reduced hardware load. This helps developers maintain network adaptability without incurring latency penalties or the need for hardware-specific optimizations. Additionally, the Origin E6 provides a fully scalable solution perfect for demanding environments like next-generation smartphones, automotive systems, and consumer electronics. Thanks to a comprehensive software suite based around TVM, the E6 supports a broad span of AI models, including transformers and large language models, offering unparalleled scalability and efficiency. Whether for use in AR/VR platforms or advanced driver assistance systems, the E6 NPU cores provide robust solutions for high-performance computing needs, facilitating numerous real-world applications.
The MIPITM CSI2MUX-A1F operates as a sophisticated CSI2 video multiplexor designed to handle multiple camera inputs simultaneously. In compliance with CSI2 rev 1.3 and DPHY rev 1.2 standards, this multiplexor can manage inputs from up to four CSI2 cameras, consolidating them into a single comprehensive video stream. Engineered for high-efficiency video streamlining, it operates at a data rate of 4 x 1.5Gbps, ensuring real-time processing and efficient data throughput. The ability to integrate multiple video feeds into a single output makes it suitable for systems requiring complex multimedia handling and advanced video applications. This multiplexor provides solutions for systems where video data from various sources needs to be aggregated efficiently, optimizing space and resource utilization across video interfaces. Its seamless integration expands its utility across multiple paradigms, making it a staple in any comprehensive video system architecture.
The xcore.ai platform stands as an economical and high-performance solution for intelligent IoT applications. Designed with a unique multi-threaded micro-architecture, it supports applications requiring deterministic performance with low latency. The architecture features 16 logical cores, split between two multi-threaded processor tiles, which are equipped with 512 kB of SRAM and a vector unit for both integer and floating-point computations. This platform excels in enabling high-speed interprocessor communications, allowing tight integration among processors and across multiple xcore.ai SoCs. The xcore.ai offers scalable performance, adapting the tile clock frequency to meet specific application requirements, which optimizes power consumption. Its ability to handle DSP, AI/ML, and I/O processing within a singular development environment makes it a versatile choice for creating smart, connected products. The adaptability of the xcore.ai extends to various market applications such as voice and audio processing. It supports embedded PHYs for MIPI, USB, and LPDDR control processing, and utilizes FreeRTOS across multiple threads for robust multi-threading performance. On an AI and ML front, the platform includes a 256-bit vector processing unit that supports 8-bit to 32-bit operations, delivering exceptional AI performance with up to 51.2 GMACC/s. All these features are packaged within a development environment that simplifies the integration of multiple application-specific components. This makes xcore.ai an essential platform for developers aiming to leverage intelligent IoT solutions that scale with application needs.
The Orion MFH IP Cores are designed for optimal performance in 4G mobile fronthaul networks, compliant with the ITU-T specifications for CPRI signal multiplexing. They adeptly handle various CPRI options, ranging from 2.4576 Gbps to 12.16512 Gbps, ensuring high compatibility and performance. Featuring both muxponder and transponder configurations, Orion cores facilitate the efficient mapping and transport of CPRI signals via Optical Transport Network infrastructures, ideal for modern telecommunications frameworks. Their advanced capabilities enable telecommunications providers to enhance their network reliability and service delivery, adapting seamlessly to different fronthaul scenarios.
The ADQ35 is a versatile dual-channel digitizer designed for high-performance data acquisition at a sampling rate of 10 GSPS. With its flexible configuration, the ADQ35 supports both a two-channel operation at 5 GSPS and a single-channel mode at the full 10 GSPS. The device is DC-coupled with a bandwidth capacity of up to 2.5 GHz, which suits it for a variety of conditions where signal integrity is key. A highlight of the ADQ35 is its open onboard Xilinx Kintex Ultrascale KU115 FPGA, offering extensive capabilities for custom digital signal processing. This device also facilitates peer-to-peer streaming at a rapidity of 14 Gbyte/s, enabling direct and efficient data transfer to GPUs or CPUs. This makes it exceptional for applications that rely on large-scale data handling and processing efficiency. The ADQ35 is engineered for use in various high-demand applications such as Time-of-Flight Mass Spectrometry, LiDAR systems, and scientific instrumentation. This flexibility is further enhanced by an array of standard and optional firmware packages, which empower users to tailor the device's capabilities according to specific project needs.
Trion FPGAs by Efinix are engineered to meet the demanding needs of the fast-paced edge computing and IoT markets. These FPGAs feature Efinix's innovative Quantum® compute fabric, providing a compact yet powerful processing platform. Particularly suitable for general-purpose applications, Trion devices cover a range of logic densities to suit various needs, from mobile and IoT to consumer-oriented and industrial applications. Built on a 40 nm process node, Trion FPGAs incorporate critical functionalities such as GPIO, PLLs, MIPI interfaces, and DDR controllers, establishing a versatile base for numerous potential implementations. These features allow developers to address complex compute tasks efficiently, making Trion FPGAs ideal for scenarios where space is at a premium and performance cannot be compromised. Trion FPGAs are designed for development speed and simplicity, supported by their small package sizes and efficient power consumption. This makes them particularly appropriate for handheld devices and application sectors such as med-tech and smart home technology. With ready capabilities for image enhancement, feature extraction, and real-time data processing, Trion FPGAs facilitate the rapid deployment of smart solutions. Besides their technical robustness, Trion devices offer a strategic advantage with their long-term lifecycle support until at least 2045, aligning with the extended production needs typical in industrial fields. This, coupled with their seamless configuration and migration features, sets Trion FPGAs apart as a top choice for integrated and edge applications.
Designed for FPGA contexts, the MIPITM SVTPlus-8L-F is a sophisticated 8-lane second-generation serial video transmitter. Adhering to the stringent requirements of the CSI2 rev 2.0 and DPHY rev 1.2 standards, this transmitter delivers data at an impressive 12Gbps. It stands out for its seamless integration into video systems, offering unparalleled data transmission capabilities and upholding the fidelity of transmitted signals. The transmitter is designed to support high data loads, ensuring that it can handle intensive video applications with ease. Its design not only facilitates robust data rates but also ensures that the transmitted signals maintain clarity and accuracy, essential for advanced video processing systems. By incorporating modern design methodologies, the MIPITM SVTPlus-8L-F ensures reliable data flow, minimal transmission errors, and enhanced system performance. This transmitter is a pivotal addition to any advanced digital video system, providing essential high-speed data transmission features.
Topaz FPGAs from Efinix are designed for volume applications where performance and cost-effectiveness are paramount. Built on their distinctive Quantum® compute fabric, Topaz devices offer an efficient architecture that balances logic resource availability with power minimization. Suitable for a plethora of applications from machine vision to wireless communication, these FPGAs are characterized by their robust protocol support, including PCIe Gen3, MIPI D-PHY, and various Ethernet configurations. One of the standout features of Topaz FPGAs is their flexibility. These devices can be effortlessly adapted into systems requiring seamless high-speed data management and integration. This adaptability is further enhanced by the extensive logic resource options, which allow increased innovation and the ability to add new features without extensive redesigns. Topaz FPGAs also offer product longevity, thriving in industries where extended lifecycle support is necessary. Efinix ensures ongoing support until at least 2045, making these FPGAs a reliable choice for projects aiming for enduring market presence. Among the key sectors benefiting from Topaz's flexibility are medical imaging and industrial control, where precision and reliability are critical. Moreover, Efinix facilitates migration from Topaz to Titanium for projects requiring enhanced performance, ensuring scalability and minimizing redesign efforts. With varying BGA packages available, Topaz FPGAs provide comprehensive solutions that cater to both the technological needs and strategic goals of enterprises.
The ADQ35-WB is a robust data acquisition module designed to handle both high-frequency and dual-channel applications at a high sampling rate. It offers either a dual-channel configuration at 5 GSPS or a single-channel setup at 10 GSPS. The digitizer boasts a significant 9.0 GHz usable analog input bandwidth, making it ideal for complex and high-demand applications such as RADAR, LiDAR, and scientific research. Equipped with an open onboard Xilinx Kintex Ultrascale KU115 FPGA, the ADQ35-WB provides substantial resources for custom real-time digital signal processing. This module also supports high-speed peer-to-peer streaming of data to GPUs or CPUs at speeds up to 14 Gbyte/s. This high throughput is complemented by advanced triggering options, making it highly functional for sophisticated data handling and processing. In terms of practical usage, the ADQ35-WB includes a comprehensive suite of hardware options, firmware, and software tools designed for straightforward integration into existing systems. This includes the default data acquisition firmware, optional waveform averaging, and pulse detection firmware, as well as a development kit for customized FPGA development.
The MIPITM SVRPlus2500 is an efficiently designed 4-lane video receiver that meets the challenges of contemporary video systems through its compliance with CSI2 rev 2.0 and DPHY rev 1.2 standards. This device is crafted for high-performance applications, featuring a low clock rating that facilitates easy timing closure and supports PRBS. Capable of handling 4/8/16 output pixels per clock, this receiver includes innovative calibration support and 1:16 input deserializers per lane. Its 16 virtual channels empower it to manage robust data streams, operating effectively at a data throughput of 4 x 2.5Gbps, which ensures high fidelity in video reception. The SVRPlus2500 stands as a versatile solution for diverse video processing needs, balancing performance and integration with ease. Its reliability in managing high data rates and providing seamless video reception makes it ideal for a wide array of advanced video applications.
The RWM6050 Baseband Modem from Blu Wireless is a high-performance component designed for mmWave communications. It supports gigabit-level data rates through its advanced modulation and channelization technologies, making it ideal for various access and backhaul applications. The modem's substantial flexibility is attributed to its compatibility with multiple RF chipsets and its design which is influenced by Renesas collaboration, ensuring robust, scalable wireless connectivity. This modem features dual integrated modems and an adaptable digital front end, including PHY, MAC, and ADC/DAC functionalities. It supports beamforming with phased array antennas, facilitating efficient signal processing and network synchronization for enhanced performance. These attributes make the RWM6050 a key enabler for deploying next-generation wireless communication systems. Built to optimize cost efficiency and power consumption, the RWM6050 offers versatile options in channelization and modulation coding, effectively scaling bandwidth to match multi-gigabit requirements. It provides a powerful solution to meet the growing demands of modern data networks, effectively balancing performance, adaptability, and integration ease.
The MIPITM SVRPlus-8L-F is an advanced 8-lane second-generation serial video receiver tailored for FPGA applications. It adheres to the CSI2 rev 2.0 and DPHY rev 1.2 standards, featuring an impressive ability to handle 16 virtual channels and output 4 pixels per clock. The receiver boasts a robust calibration support mechanism coupled with comprehensive communication error statistics, making it an optimal choice for high-performance video applications. Operating at a substantial data rate of 12Gbps, the IP is designed to meet the high demands of modern video systems. Its integration ease and high functionality are supported by its detailed error-reporting capabilities, which provide invaluable insights for system improvements. This IP's architecture is ideal for ensuring seamless video data reception, maintaining integrity, and optimizing performance. Further enhancing its effectiveness, the MIPITM SVRPlus-8L-F is equipped with calibration support, offering a complete package for efficient and reliable video signal processing in varied environments.
Analog Bits offers a wide range of I/O solutions, including differential clocking/signaling and crystal oscillator IP. These solutions are customized to address specific die-to-die communication needs and ensure high signal integrity. The company's I/O technologies are designed using the fewest number of transistors while maintaining robust signaling quality. These solutions are proven in high-volume production and are fully supported by their expert team to meet various client requirements, offering flexibility for integration into diverse semiconductor environments.
The ADQ7DC is a state-of-the-art digitizer that offers a blend of high resolution with 14 bits and a rapid 10 GSPS sampling rate. This model surpasses previous limitations in high-speed applications, opening new possibilities for advanced measurement and processing tasks. It operates in both single-channel at 10 GSPS and dual-channel at 5 GSPS modes, offering versatility in data capture requirements. Its DC-coupled input boasts a commendable 3 GHz input bandwidth, with capabilities for programmable DC-offsets and a digital noise reduction filter. The onboard Xilinx Kintex Ultrascale KU115 FPGA provides ample resources for diverse real-time digital signal processing tasks. With peer-to-peer data streaming to GPUs facilitated at 7 Gbyte/s, users gain enhanced efficiency for intensive data handling applications. With its broad compatibility with various form factors like PCIe and PXIe, ADQ7DC is ideal for high-speed RF data recording, scientific instruments, and more. The built-in firmware offers a rich selection of application-specific functions that can be accessed without any need for FPGA development, significantly simplifying its operation and integration.
The Bluetooth Digital Clock - Levo Series is a state-of-the-art timekeeping solution that incorporates Bluetooth technology to ensure precise and reliable synchronization in diverse settings. Designed for seamless connectivity and ease of use, this digital clock series enables hassle-free integration with wireless systems, making it a go-to choice for environments where cabling is impractical or undesirable.\n\nWith a sleek and modern design, the Levo Series brings not only efficiency but also aesthetic appeal to any space. It is engineered to provide accurate time display and synchronization over Bluetooth connections, thereby offering a wireless alternative to traditional clock setups. This series effectively eliminates the complexity of network wiring, contributing to cleaner installations and more flexibility in clock placement.\n\nIdeal for institutions like schools, healthcare facilities, and office buildings, the Bluetooth Digital Clock - Levo Series offers features like easy setup, maintenance-free operation, and compatibility with various Bluetooth-enabled devices. By choosing this product, organizations benefit from a state-of-the-art solution that aligns with modern wireless communication standards, facilitating better time management and system integration.
Certus Semiconductor's Digital I/O solutions are engineered to meet a myriad of GPIO and ODIO standards, enhancing operational efficacy for a wide range of applications. Their products support common interfaces such as I2C, I3C, SPI, JEDEC CMOS, and many more, offering a versatile solution to digital connectivity. These solutions deliver outstanding ESD protection and are capable of functioning across multiple voltage ranges including 1.8V, 3.3V, and dynamically switchable levels up to 5V. The digital I/O products emphasize flexibility and reliability, providing capabilities like ultra-low power consumption and multiple drive strengths, which ensure adaptability for specific project needs. The I/O solutions are supplemented by a robust suite of features designed to optimize impedance and ensure high signal integrity. With an emphasis on minimal capacitance impact, these solutions are suited for sensitive applications demanding stringent ESD measures. The comprehensive libraries provided by Certus also include integrated test points and programmable settings, further broadening their usability and application scope. Compatibility with various foundry processes is another hallmark of Certus's Digital I/O offerings, reinforcing their reliability. Clients can rely on proven design expertise to adapt these solutions to unique product specifications, ensuring project success from the outset.
The NeuroVoice AI Chip offers a revolutionary solution for voice processing, harnessing neuromorphic frontend technology to provide ultra-low power consumption and superior noise resilience. It is designed for hearables and smart voice-controlled devices, ensuring efficient operation even in high-noise environments. This chip processes audio data on-device, eliminating the need for continuous cloud connectivity while enhancing user privacy. By integrating NASP technology, the NeuroVoice chip excels in voice activity detection, smart voice control, and voice extraction, making it ideal for applications in earbuds, voice access systems, and smart home devices. Its ability to only transmit or recognize human voice while muting background sounds significantly improves command clarity and user interactions, especially in environments prone to irregular noises. The chip is designed to adapt to various audio inputs, providing capabilities for clear communication, enhancing speech intelligibility, and offering features like voice passthrough in hearing aids. With power consumption kept below 150µW, it allows for prolonged device usage and efficient battery management, making it an ideal component for modern voice-activated devices and hearing assistance technologies.
The Scorpion family of processors offers support for OSU containers as per the CCSA and IEEE standards, particularly the OSUflex standard. These processors accommodate various client-side signals, including E1/T1, FE/GE, and STM1/STM4, ensuring robust performance monitoring and optional Ethernet rate limitation. Scorpion processors can adeptly map these client signals to OSU or ODU containers, which are subsequently multiplexed to OTU-1 lines. Known for their flexibility and efficiency in handling diverse traffic types, Scorpion processors serve as foundational elements for advancements in access networks and optical service units, ensuring sustained performance in increasingly complex networking environments.
DolphinWare IPs is a versatile portfolio of intellectual property solutions that enable efficient SoC design. This collection includes various control logic components such as FIFO, arbiter, and arithmetic components like math operators and converters. In addition, the logic components span counters, registers, and multiplexers, providing essential functionalities for diverse industrial applications. The IPs in this lineup are meticulously designed to ensure data integrity, supported by robust verification IPs for AXI4, APB, SD4.0, and more. This comprehensive suite meets the stringent demands of modern electronic designs, facilitating seamless integration into existing design paradigms. Beyond their broad functionality, DolphinWare’s offerings are fundamental to applications requiring specific control logic and data integrity solutions, making them indispensable for enterprises looking to modernize or expand their product offerings while ensuring compliance with industry standards.
Suited for high throughput applications, the MIPITM SVTPlus2500 is a versatile 4-lane video transmitter compliant with CSI2 rev 2.0 and DPHY rev 1.2 standards. This transmitter offers seamless operation with a low clock rating, simplifying timing closure challenges, and supports PRBS and calibration for enhanced accuracy. It is designed to handle 8/16 pixel inputs per clock, offering programmable timing parameters for versatile use across different systems. With its capacity to manage 16 virtual channels and achieve data rates up to 4 x 2.5Gbps, it ensures efficient video signal transmission with minimal data loss. The SVTPlus2500's adaptability makes it ideal for sophisticated video systems, offering controlled and precise data transmission over flexible configurations. Its robust system integration capabilities are designed to meet a broad range of industry standards, enhancing overall operational efficiency.
Certus Semiconductor's Analog I/O solutions focus on delivering ultra-low capacitance and extreme ESD protection, making them ideal for sophisticated applications that demand high reliability. These solutions are adept for high-speed SerDes and RF communications thanks to their ability to manage impedance matching and maintain strong signal integrity. The analog libraries include comprehensive solutions that accommodate ESD and power clamps within macro cells, optimizing performance while minimizing impact on overall chip design. Advanced tolerance levels for signal swings including those below ground are supported, ensuring robust performance in a variety of operational conditions. Specialized macro cells cater to frequency ranges above 30 GHz and data rates surpassing 112 Gbps, demonstrating their capability to handle demanding technical requirements. Certus's expertise in analog design translates into solutions adept at withstanding levels of stress far beyond industry standard HBM and CDM requirements. This resilience, coupled with high-temperature tolerance and radiation-hardening, provides a safety net against diverse environmental challenges.
The IP Camera Front End by Bitec is specifically optimized for Altera CMOS sensor technology, providing a comprehensive parameterized design that enhances video signal processing, especially for high-resolution camera applications. This IP is critical in industries that rely on accurate image data capture, including security surveillance, industrial inspection, and scientific imaging.\n\nThis tailored solution supports the integration of complex video analytics, ensuring rapid data throughput and minimal latency in video processing. Its ability to handle large data volumes with precision and accuracy is a testament to its robust engineering design. Users benefit from this system's configuration flexibility, which allows customization according to specific application demands, whether in high-speed environments or scenarios demanding detailed image analysis.\n\nEngineered with adaptability in mind, the IP core supports a wide array of video outputs, maintaining compatibility with both legacy and emerging video standards. This ensures that manufacturers can easily implement the core into their systems, maintaining a significant edge in the competitive field of multimedia technology.
ISPido is an advanced and fully RTL-configurable Image Signal Processing pipeline, which can be customized through the AXI4-LITE protocol, such as with RISCV processors. The pipeline includes components like defective pixel correction, color filter array interpolation using the Malvar-Cutler algorithm, and auto-white balance. Additionally, it supports complex operations like statistics collection and the implementation of 3x3 convolution filters for enhanced video analyses.\n\nISPido is designed to handle inputs with varying bit depths (8, 10, or 12 bits) and resolutions as high as 7680x7680, including a standard 4K2K at 30fps. Its architecture adheres strictly to the AMBA AXI4 standards, ensuring complete configurability and adaptability to diverse system requirements. This makes ISPido incredibly versatile, whether deployed for small-scale, low-power devices, or expansive 8K resolution applications.\n\nThe imaging pipeline incorporates a wide range of video processing techniques, such as RGB to YCbCr color space conversion and HDR support, all while maintaining a minimal footprint on the hardware. Its flexibility allows it to be tailored for various use cases, ensuring optimal performance across different platforms.
SnpExpert is a dedicated platform designed for in-depth S-parameter analysis, which is vital in understanding the behavior of RF and high-speed digital circuits. By providing an unparalleled view of network parameters, this tool helps engineers ensure that designs will perform as expected across different frequencies and scenarios. The precision and clarity offered by SnpExpert simplify the analysis of complex interactions within electronic systems, allowing for efficient troubleshooting and optimization. This feature is particularly valuable when modifications are needed to enhance circuit performance, enabling refined design choices that foster innovation and reliability. SnpExpert's robust analytical capabilities make it an essential tool for tackling the intricate challenges associated with RF design and testing. Its insights into S-parameter metrics enable designers to achieve the optimal performance required in today's demanding technological landscape.
The ATEK250P3 is designed to function as an absorptive Single Pole Double Throw (SPDT) switch. Its operating frequency ranges from low frequencies up to 14 GHz. Noteworthy attributes include a minimal insertion loss of 1.5 dB and a high isolation of 43 dB, ensuring superior performance in managing signal routing tasks. Additionally, it features an impressive IP1dB of 27 dBm and an IIP3 of 44 dBm, making it a highly reliable choice for RF applications. With a positive control voltage and encased in a compact 3×3 mm QFN package, it provides ease of integration into various electronic systems. This product is optimal for use in telecommunication systems and devices that require efficient and reliable switching capabilities at microwave frequencies. The ATEK250P3 stands out due to its robustness and efficiency, offering solutions that enhance performance in RF systems while minimizing power consumption and signal loss. It is a critical component designed to meet the high standards of modern communication networks, ensuring seamless integration and operation.
The Chipchain C100 is a sophisticated single-chip solution tailored for Internet of Things (IoT) applications. It incorporates a 32-bit RISC-V CPU, capable of running at speeds up to 1.5GHz, making it ideal for high-performance computing tasks. With built-in RAM and ROM, it provides efficient processing and memory capabilities. The C100 features integrated wireless communication through Wi-Fi, alongside various transmission interfaces. This makes the chip versatile for a wide range of applications while maintaining low power consumption. It also includes essential components like an analog-to-digital converter (ADC), low dropout regulators (LDO), and a temperature sensor. Designed for ease of use in diverse IoT environments, the C100 facilitates simpler, faster development, making it suitable for security systems, smart homes, toys, games, and healthcare applications. Its integration of multiple functionalities in a compact design ensures reliable performance across industries.
The Dukosi Cell Monitoring System (DKCMS) is an advanced solution designed to enhance the performance, safety, and sustainability of batteries, particularly for high-power applications. This innovative system employs a Dukosi DK8102 Cell Monitor per cell, offering precise voltage and temperature data collection. By using the proprietary C-SynQ communication protocol, cell data is transmitted synchronously via a single bus antenna to a DK8202 System Hub, maintaining communication even amid dynamic conditions. This architecture facilitates real-time monitoring, ensuring cells operate within safe parameters while optimizing the battery's overall performance. DKCMS's contactless connectivity stands out, eliminating the complexity of traditional wire harnesses and simplifying integration. This design reduces the number of components needed, which underscores reliability and reduces cost. Additionally, the contactless communication provides robust data transmission with predictable latency, catering to complex, safety-critical environments where precision and reliability are paramount. Scalability is another essential feature of the DKCMS, enabling seamless adaptation to a range of applications from electric vehicles to energy storage systems. The system supports up to 216 cells, allowing flexibility in design without extensive reengineering. This allows for efficient upscaling or downscaling according to specific project requirements, ensuring that the solution can evolve alongside changing technological or market landscapes.
The nxFeed Market Data System leverages FPGA technology to deliver ultra-low latency market data handling. It serves as a comprehensive feed handler that decodes, normalizes, and builds order books with ease, significantly reducing processing resources and latency. The system provides a straightforward API, allowing seamless integration with existing trading algorithms or new in-house developments. By deploying on FPGA-based NICs, nxFeed minimizes network load and accelerates data throughput, enabling rapid algorithmic decision-making. Its design simplifies market data application development, making it a vital tool for traders requiring fast and efficient data processing at volatile exchange feeds.
The Camera ISP Core is designed to optimize image signal processing by integrating sophisticated algorithms that produce sharp, high-resolution images while requiring minimal logic. Compatible with RGB Bayer and monochrome image sensors, this core handles inputs from 8 to 14 bits and supports resolutions from 256x256 up to 8192x8192 pixels. Its multi-pixel processing capabilities per clock cycle allow it to achieve performance metrics like 4Kp60 and 4Kp120 on FPGA devices. It uses AXI4-Lite and AXI4-Stream interfaces to streamline defect correction, lens shading correction, and high-quality demosaicing processes. Advanced noise reduction features, both 2D and 3D, are incorporated to handle different lighting conditions effectively. The core also includes sophisticated color and gamma corrections, with HDR processing for combining multiple exposure images to improve dynamic range. Capabilities such as auto focus and saturation, contrast, and brightness control are further enhanced by automatic white balance and exposure adjustments based on RGB histograms and window analyses. Beyond its core features, the Camera ISP Core is available with several configurations including the HDR, Pro, and AI variations, supporting different performance requirements and FPGA platforms. The versatility of the core makes it suitable for a range of applications where high-quality real-time image processing is essential.
The OSIRE E3731i is crafted to meet high-intensity RGB lighting demands in automotive interiors, featuring an intelligent RGB LED configuration with an embedded integrated circuit. This circuit manages the R/G/B LEDs and stores optical measurement data, ensuring enhanced control over color algorithms via an external microcontroller. The device uses open system protocols, allowing comprehensive data reading and control features, including temperature management for color consistency. The OSIRE E3731i is specifically patent-compliant and supports automotive production requirements, maintaining rigorous standards for both temperature compensation and controller communication within the LED unit.
The FaintStar Sensor-on-a-Chip is an advanced technology designed for space applications requiring precision and reliability. It integrates all necessary components onto a single chip, facilitating ease of use and superior performance in star tracking and navigation scenarios. The sensor is characterized by a 1020 x 1020 pixel array with a 10-micron pixel pitch, making it suitable for high-resolution applications. Built for resilience in space conditions, the FaintStar sensor is flight-proven with a Technology Readiness Level 9 (TRL9), indicating a high level of maturity and reliability. It includes 'light-to-centroids' image processing capabilities that allow for accurate position tracking and navigation determinations. Moreover, its SpaceWire LVDS command/data interface supports high-speed data communication, ensuring efficiency during space missions. Featuring a radiation-tolerant design, the FaintStar sensor can withstand the challenging space environment, including Total Ionizing Dose (TiD) and proton radiation. It complies with ITAR-free and ESCC standards, such as 2269000-evaluated and 9020 flight model procurement, ensuring it meets the rigorous requirements for international use in aerospace applications.
RegSpec by Dyumnin is an innovative control configuration and status register generator designed to streamline the design process for complex systems. RegSpec supports a range of input data formats such as SystemRDL, IP-XACT, CSV, Excel, XML, or JSON. It can generate comprehensive output including Verilog RTL, System Verilog UVM, SystemC header files, and detailed documentation in HTML, PDF, RTF, Word, and Frame formats. This flexibility allows designers to address complex synchronization, interrupt, and pulse generation features with ease.\n\nFurthermore, RegSpec is equipped to handle advanced CCSR register design edge cases, making it the only tool of its kind that fully supports such comprehensive features industry-wide. It also simplifies the verification process by generating UVM-compatible code and RALF file formats, while also offering C/C++ header file generation for firmware and advanced system modeling.\n\nRegSpec enhances interoperability with other CSR tools by supporting the standard import/export of SystemRDL and IP-XACT formats, while also accommodating XML, CSV, and Excel custom formats. It also saves its data in a JSON format, facilitating easy integration with custom scripts. Its multifaceted capabilities make it a key asset for designers seeking efficient, comprehensive register specification solutions.
The Scan Ring Linker (SRL) is an innovative solution from Intellitech, designed to simplify the complexities of managing multiple scan chains within PCBs. This complete IP module can be effortlessly embedded into CPLDs, FPGAs, or ASICs, effectively linking various scan rings into a singular, high-speed test bus. By doing so, it allows for independent testing and configuration of devices situated on secondary scan chains, streamlined through the IEEE 1149.1 interface. The SRL module facilitates a reduction in design complexity and cost by unifying divergent scan paths, which traditionally require significant overhead to manage. Its implementation ensures that all scan chains operate cohesively, providing a singular route for both test and configuration data. This level of integration considerably enhances the efficiency and reliability of boundary-scan testing, offering an adaptable solution to manage diverse PCB architectures. SRL stands out by seamlessly integrating with the broader Eclipse Testing Environment, ensuring that all test and configuration protocols remain consistent across the PCB’s lifecycle. This underscores the module’s utility across a range of applications requiring precise, efficient JTAG test integration, ensuring that even the most complex systems maintain high reliability and performance.
The SMS Fully Integrated Gigabit Ethernet & Fibre Channel Transceiver Core is a state-of-the-art solution embedded with advanced high-speed serial front-end features. This transceiver includes essential components such as high-speed drivers, robust clock recovery DLLs, and PLL architectures. An integrated Serializer/Deserializer (SERDES) unit and sophisticated data alignment capabilities ensure high-performance data transmission. A distinctive low jitter PECL and comma detect function enhance data integrity, making it a reliable choice for high-bandwidth data communications applications. Engineered for compliance with the IEEE 802.3z Gigabit Ethernet standards, this transceiver core supports full-duplex operations and employs a 10-bit controller interface for both receive and transmit data paths. The inclusion of programmable receive cable equalization diminishes the need for external components, thus streamlining the integration process into System-On-Chip (SOC) designs. The design prioritizes cost, power efficiency, and performs well over a diverse range of operating environments.
ISPido on VIP Board offers a tailored run-time solution compatible with Lattice Semiconductor's VIP (Video Interface Platform). It streamlines image processing tasks, providing users with various options such as automatic configurations or manual controls through a built-in menu interface. This functionality allows for real-time adjustments of settings like gamma tables and convolution filters.\n\nDesigned with simplicity in mind, it interfaces with CrossLink VIP input bridge boards and supports dual Sony IMX 214 image sensors. Outputs are delivered via HDMI with YCrCb 4:2:2 formatting, ensuring sharp, accurate imaging. The onboard ECP5 VIP processor utilizes an ECP5-85 FPGA for efficient processing.\n\nThis product provides a dynamic solution for achieving precision image quality on the fly, making it ideal for environments requiring versatile image reception and enhancement.
The UARTmodule from Inicore is a universal asynchronous receiver-transmitter designed for implementing serial communication with ease. Built for versatility, this module supports a wide array of data formats and baud rates, enabling compatibility with numerous communication protocols. Its reliable architecture ensures accurate data transmission and reception, crucial in applications ranging from embedded systems to telecommunications. The UARTmodule excels in environments requiring efficient data exchange, from low-speed communication systems to high-throughput industrial networks. Designed for straightforward integration into both FPGA and ASIC technologies, it aids developers in achieving swift and efficient communication solutions. Its intuitive control settings and extensive configurability provide developers with the tools to tailor its use to specific system requirements, enabling effective design adaptations.
The CVC Verilog Simulator from Tachyon Design Automation is a comprehensive solution for simulating electronic hardware models following the IEEE 1364 2005 Verilog HDL standard. This simulator distinguishes itself by compiling Verilog into native X86_64 machine instructions, allowing for rapid execution as a simple Linux binary. It supports both compiled and interpreted simulation modes, enabling efficient elaboration of designs and quick iteration cycles during the design phase. The simulator boasts a large gate and RTL capacity, enhanced by its 64-bit support which enables faster simulations compared to traditional 32-bit systems. To further augment its high speed, CVC integrates features like toggle coverage with per-instance and tick period controls. These allow designers to maintain oversight over signal changes and states throughout the simulation process. Additionally, CVC provides robust support for various interfaces and simulation techniques, including full PLI (programming language interfaces) and DPI (direct programming interface) support, ensuring seamless integration and high-speed interaction with external C/C++ applications. This simulator also supports various design state dump formats which enhance compatibility with GTKWave, a common tool used for waveform viewing.
The HiPrAcc NCS280-I PCIe Card is designed to enhance performance in networking and storage applications using the Intel Agilex 7 I-Series FPGAs. It offers options for dual QSFP interfaces, supporting configurations up to 200G per interface, effectively addressing the requirements of high-bandwidth network applications. Equipped with 72-bit DDR4 banks, this card allows for scalable memory solutions, offering both 8GB and 16GB options. This facilitates efficient data processing, essential for complex computational tasks. The inclusion of Gen4 M.2 NVMe SSD slots adds substantial storage capacity, allowing for high-speed data storage and retrieval operations. This card also highlights its R-Tile based CXL or PCIe Gen5 host interfaces, which support advanced connectivity and networking operations. Integrated PTP/1588 network synchronization further enhances its value by ensuring timing precision necessary for telecommunications and data center environments.
Laser Triangulation Sensors are fundamental in non-contact measuring applications, particularly when exacting precision in position and dimension checks is essential. Designed to provide a reliable solution, these sensors utilize advanced laser technology to deliver accurate measurements over a broad range. The devices are capable of measuring distances and displacements efficiently, making them invaluable in industries where precision is non-negotiable. These sensors are constructed to function seamlessly in dynamic environments, providing measurements with a minimal margin of error. The sensors employ a unique mechanism utilizing both blue and IR lasers, which aids in capturing precise data from target surfaces. They offer capabilities to measure across ranges from as little as 2mm to expansive stretches up to 2.5m, all while maintaining a measurement error margin of ±1 μm. Such accuracy is complemented by a high sampling frequency of up to 160 kHz, ensuring rapid data acquisition in varying industrial conditions. Laser Triangulation Sensors come equipped with robust features that allow them to address complex measurement challenges. Whether it's monitoring surface contours or inspecting objects in motion, these sensors adapt readily, ensuring comprehensive data for operators. Their versatility is evident as they can be applied to countless applications, maximizing efficiency across industrial operations.