All IPs > Analog & Mixed Signal
Analog & Mixed Signal semiconductor IPs are essential components in modern electronics, serving as the backbone for a wide range of applications that require the processing, conversion, and management of both analog and digital signals. This category encompasses a diverse array of integrated circuit designs and modules that facilitate the seamless handling of signal variations, ensuring the performance and efficiency of electronic devices.
The category includes Analog-to-Digital (A/D) and Digital-to-Analog (D/A) Converters, crucial for the conversion of signals between their analog and digital forms, enabling precise data processing and communication in devices such as smartphones, audio equipment, and sensor interfaces. Amplifiers, Analog Comparators, and Analog Filters further enhance signal fidelity by boosting signal strength, comparing voltages, and removing unwanted noise or frequency components, respectively.
Analog & Mixed Signal IPs also feature specialized components like Phase-Locked Loops (PLLs) and Delay-Locked Loops (DLLs) that are pivotal in frequency synthesis and timing signal alignment in high-speed data communication systems. Power Management IPs, including DC-DC Converters, ensure optimal energy efficiency by effectively regulating voltage levels and power distribution across electronic systems.
Additional solutions such as Clock Synthesizers, RF Modules, and Photonics components address the growing needs for high-frequency signal generation, wireless communication enhancement, and optical signal processing. The category also contains Analog Front Ends and Multiplexers, which are integral in conditioning and selecting signals in complex systems, highlighting the expansive utility of Analog & Mixed Signal semiconductor IPs in contemporary electronic design and innovation.
The agileADC analog-to-digital converter is a traditional Charge-Redistribution SAR ADC that is referenced to VDD, VSS. The architecture can achieve up to 12-bit resolution at sample rates up to 64 MSPS. It includes a 16-channel input multiplexor that can be configured to be buffered or unbuffered, and support differential or single-ended inputs. Agile Analog designs are based on tried and tested architectures to ensure reliability and functionality. Our automated design methodology is programmatic, systematic and repeatable leading to analog IP that is more verifiable, more robust and more reliable. Our methodology also allows us to quickly re-target our IP to different process options. Our highly configurable and multi-node analog IP products are developed to meet the customer’s exact requirements. These digitally-wrapped and verified solutions can be seamlessly integrated into any SoC, significantly reducing complexity, time and costs.
The agilePMU Subsystem is an efficient and highly integrated power management unit for SoCs/ASICs. Featuring a power-on-reset, multiple low drop-out regulators, and an associated reference generator. The agilePMU Subsystem is designed to ensure low power consumption while providing optimal power management capabilities. Equipped with an integrated digital controller, the agilePMU Subsystem offers precise control over start-up and shutdown, supports supply sequencing, and allows for individual programmable output voltage for each LDO. Status monitors provide real-time feedback on the current state of the subsystem, ensuring optimal system performance. Agile Analog designs are based on tried and tested architectures to ensure reliability and functionality. Our automated design methodology is programmatic, systematic and repeatable leading to analog IP that is more verifiable, more robust and more reliable. Our methodology also allows us to quickly re-target our IP to different process options. Our highly configurable and multi-node analog IP products are developed to meet the customer’s exact requirements. These digitally-wrapped and verified solutions can be seamlessly integrated into any SoC, significantly reducing complexity, time and costs.
CoreVCO represents CoreHW's commitment to delivering innovative wideband voltage-controlled oscillator (VCO) solutions, particularly suited for extremely demanding environments. Constructed utilizing robust SiGe technologies, the CoreVCO incorporates dual radiation-hardened VCOs, catering effectively to applications requiring minimal phase noise and resilient performance. The VCO operates over wide frequency ranges—0.7 GHz to 6.6 GHz—utilizing two distinct oscillator designs (VCOPMOS and VCOBJT). Its ability to maintain low phase noise under harsh conditions makes it ideal for critical applications like military communication systems and space exploration. The design's intrinsic radiation hardness ensures operational continuity where reliability is paramount. CoreHW's CoreVCO incorporates a host of integrated features such as bandgap references, low-dropout regulators, and SPI interfaces for precise control and tuning. With its small form factor, it serves as an efficient solution for a range of high-reliability wireless and communication systems, offering consistent performance across various operating conditions.
Silicon Creations' Free Running Oscillators deliver consistent and reliable clock outputs for applications that require high precision and low power. These oscillators are equipped to handle variations in power, temperature, and voltage (PVT) with minimal impact on performance. Their design ensures stability across these parameters, making them perfect for use in systems where consistent timing is crucial, such as communication systems and embedded devices. The low-power nature of these oscillators makes them especially suited to battery-powered devices, underscoring Silicon Creations’ focus on energy efficiency in cutting-edge semiconductor solutions.
The agileDAC is a digital-to-analog converter that uses a traditional capacitive DAC architecture. The agileDAC uses its own internal reference voltage. The architecture can achieve up to 10-bit resolution at sample rates up to 16 MSPS. Agile Analog designs are based on tried and tested architectures to ensure reliability and functionality. Our automated design methodology is programmatic, systematic and repeatable leading to analog IP that is more verifiable, more robust and more reliable. Our methodology also allows us to quickly re-target our IP to different process options. Our highly configurable and multi-node analog IP products are developed to meet the customer’s exact requirements. These digitally-wrapped and verified solutions can be seamlessly integrated into any SoC, significantly reducing complexity, time and costs.
Analog Glue solutions from Silicon Creations provide crucial analog functions such as differential buffers and multiplexers. These are essential for achieving low-jitter clock distribution and maintaining signal integrity across complex electronic systems. The analog glue functions integrate seamlessly with other Silicon Creations' IP and are tailored for low-power consumption, making them ideal for power-sensitive applications. By ensuring reliable power-on behavior and precision referencing, these solutions facilitate the smooth operation of various electronic applications that rely on precise analog functionalities.
The KL730 AI SoC is equipped with a state-of-the-art third-generation reconfigurable NPU architecture, delivering up to 8 TOPS of computational power. This innovative architecture enhances computational efficiency, particularly with the latest CNN networks and transformer applications, while reducing DDR bandwidth demands. The KL730 excels in video processing, offering support for 4K 60FPS output and boasts capabilities like noise reduction, wide dynamic range, and low-light imaging. It is ideal for applications such as intelligent security, autonomous driving, and video conferencing.
LVDS Interfaces by Silicon Creations are designed to facilitate high-speed and reliable data transmission. These interfaces are suitable for applications requiring efficient chip-to-chip communication, handling data rates up to 3.3Gbps. Featuring bi-directional capabilities and superb programmability, they can support a variety of standards and are engineered to deliver optimal signal integrity. Silicon Creations' use of robust PLLs and adaptive CDR technologies ensures the interfaces provide stable and precise alignment across all lanes. The impressive flexibility and performance of these interfaces make them ideal for a wide spectrum of modern digital applications.
The pPLL03F-GF22FDX is a specialized all-digital PLL crafted for performance computing applications. Optimized for use in GlobalFoundries' 22FDX, it delivers low-jitter clocking, suitable for complex SoCs with multiple clock domains. This PLL can handle frequencies up to 4GHz, ensuring high performance for ADC/DAC systems with moderate SNR requirements. Designed with Perceptia's second-generation PLL technology, it offers a compact footprint and minimal power draw, catering to performance computing and critical timing needs. It features fractional multiplication, offering flexible frequency selection, and supports integration into SoCs through standard views and back-end models. The pPLL03F-GF22FDX includes two separately programmable PLL outputs and is equipped with a lock-detect function to enhance system reliability. This technology ensures consistent performance across various process nodes and offers customization and migration support to meet varied technological demands.
The LC-PLLs from Silicon Creations are characterized by their low jitter performance, making them suitable for demanding clocking tasks within integrated circuits. These PLLs integrate seamlessly into a variety of SoC architectures, providing ultra-low jitter thanks to their advanced design. Ideal for applications needing precision and stability, such as high-speed data transfer and timing critical operations, LC-PLLs feature a sophisticated design that supports both fractional-N and integer-N configurations. The focus on power efficiency and die area optimization makes them a valuable addition in environments where both performance and resource saving are crucial.
The agileCMP programmable threshold comparator features a user-selectable (enable/disable) hysteresis as well as programmable threshold with 10mV step size, a latched output as well as an active (unlatched) output. With a focus on long battery life, the agileCMP can be used to monitor external analog signals and enable wake-up events as is essential in many modern SoCs. The agileCMP programmable threshold comparator is ideally suited for interrupt generation in application areas such as HPC, IoT, security, automotive and AI. Agile Analog designs are based on tried and tested architectures to ensure reliability and functionality. Our automated design methodology is programmatic, systematic and repeatable leading to analog IP that is more verifiable, more robust and more reliable. Our methodology also allows us to quickly re-target our IP to different process options. Our highly configurable and multi-node analog IP products are developed to meet the customer’s exact requirements. These digitally-wrapped and verified solutions can be seamlessly integrated into any SoC, significantly reducing complexity, time and costs.
The ORC3990 is a sophisticated System on Chip (SoC) solution designed for low-power sensor-to-satellite communication within the LEO satellite spectrum. Utilizing Totum's DMSS technology, it achieves superior doppler performance, facilitating robust connectivity for IoT devices. The integration of an RF transceiver, power amplifiers, ARM CPUs, and memory components makes it a highly versatile module. Leveraging advanced power management technology, this SoC supports a battery life that exceeds ten years, even within industrial temperature ranges from -40 to +85°C. It's optimized for usage with Totum's global LEO satellite network, ensuring substantial indoor signal coverage without the need for additional GNSS components. Efficiency is a key feature, with the chip operating in the 2.4 GHz ISM band, providing unparalleled connectivity regardless of location. Compact in design, comparable in size to a business card, and designed for easy mounting, the ORC3990 offers sought-after versatility for IoT applications. The ability to function with excellent TCO in terms of cost compared to terrestrial IoT solutions makes it a valuable asset for any IoT deployment focused on sustainability and longevity.
Specially optimized for high-performance computing environments, the Ultra-Low Latency 10G Ethernet MAC IP delivers unparalleled speed and efficiency within FPGA designs. Crafted to accommodate high data throughput, this IP core excels in applications demanding high-speed data connectivity with stringent latency requirements. Harnessing cutting-edge technology, the Ethernet MAC design minimizes latency significantly, facilitating smooth and rapid data transmission across network layers. Its architecture supports high data throughput while maintaining efficiency within the FPGA, ensuring competitive performance in various network settings. Engineers can benefit from the Ultra-Low Latency 10G Ethernet MAC's versatile licensing, allowing for integration in diverse project specifications and budget parameters. By utilizing this IP core, systems not only achieve optimized speed but also enhance their reliability and responsiveness in handling data operations.
WAVE6 is a sophisticated multi-standard video codec designed to handle an array of video standards such as AV1, HEVC, AVC, and VP9. Capable of efficiently managing high-resolution video encoding and decoding processes, WAVE6 offers unmatched performance for applications demanding 4K and 8K resolutions. The technology incorporates a dual-core architecture that doubles operational efficiency and is crucial for high-throughput sectors like data centers and surveillance systems. Key features include support for color depth adaptations ranging from 8-bit to 10-bit and advanced power efficiency mechanisms. The WAVE6 codec is notable for incorporating features such as Chips&Media’s unique lossless frame buffer compression technology, CFrame™, to significantly minimize external memory bandwidth usage. With a streamlined architecture that simplifies video processing tasks, this codec supports multiple interface standards, enhancing your system's scalability and integration. High versatility makes WAVE6 a preferred choice for modern multimedia processing units, providing effective solutions for bandwidth challenges while maintaining superior image quality. WAVE6's efficient resource management and multi-instance capabilities make it a standout product in environments requiring low power consumption and high output precision. It facilitates color space conversion, bit-depth switching, and offers secondary interface options, tailoring it for a diverse range of implementation scenarios, from mobile technology to media broadcasting facilities.
Archband Labs offers a PDM-to-PCM Converter that excels in translating Pulse Density Modulated (PDM) audio signals into Pulse Code Modulated (PCM) format. This conversion is crucial in audio signal processing where digital formats require conversions for accurate playback or further audio processing. Ideal for modern multimedia systems and portable audio devices, the PDM-to-PCM Converter provides high fidelity in signal conversion, ensuring sound quality is preserved during the process. This IP is highly efficient, making it perfect for applications where power conservation is important, such as battery-powered gadgets and smart wearables. Its compact design provides easy integration into existing systems, facilitating upgrades without significant redesigns. With reliable performance, this converter supports the growing demand for adaptable and high-efficiency audio processing solutions, aiding engineers in achieving cutting-edge audio clarity.
Silicon Creations provides a wide range of ring PLLs, offering robust clocking solutions for modern SoC environments. These PLLs deliver highly programmable frequency synthesis with considerations for power efficiency and minimal jitter. With flexibility in both fractional-N and integer-N configurations, they cater to diverse application needs ranging from system clocking to precision converter timing. Particularly notable is the capability to achieve excellent jitter performance with substantial power and area savings when compared to traditional designs. This makes Silicon Creations' ring PLLs a go-to choice for applications spanning battery-operated devices and high-performance computing systems.
The Single-Channel, 12-Bit, 1-MSPS SAR ADC is designed as a versatile analog-to-digital converter for various applications requiring precise data conversion at high speeds. This ADC utilizes a Successive Approximation Register (SAR) architecture to deliver 12-bit resolution at sampling rates up to 1 Megasample per second (MSPS). It is ideal for use in systems demanding high throughput and accuracy. This ADC is engineered to support a wide range of signal conditions and integrates features that ensure noise reduction and signal integrity. High resolution combined with fast sampling makes it suitable for real-time data acquisition in medical devices, industrial automation, and other applications where fine data precision is critical. Functionally, the ADC supports a streamlined interface for easy integration into broader system architectures. Its design encompasses configurable sample rates and built-in features that enhance signal fidelity, making it a desirable choice for applications requiring robust performance coupled with low power consumption.
Aeonic Power provides scalable on-die voltage regulation for power delivery in SOCs and chiplets. It features an architecture designed for energy optimization, offering functionalities like static IR drop mitigation and virtual power islands. This IP family is pivotal for meeting stringent power distribution requirements, particularly beneficial in the dynamic environments of digital cores and interface solutions, enabling simplification of power delivery structures.
The MXL4254A is a silicon proven Quad Gigabit SerDes implemented in digital CMOS technology. Each of the four channels supports data rate up to 4.25 Gbps. It is compatible with router-backplane links, PCI Express, SATA, RapidIO, 10 Gbps Ethernet (XAUI), FibreChannel, SFI-5, SPI-5, and other communication applications.
The MXL-LVDS-MIPI-RX is a high-frequency, low-power, low-cost, source-synchronous, Physical Layer that supports the MIPI® Alliance Standard for D-PHY and compatible with the TIA/EIA-644 LVDS standard. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The IP is configured as a MIPI slave and consists of 5 lanes: 1 Clock lane and 4 data lanes, which make it suitable for display serial interface applications (DSI). The High-Speed signals have a low voltage swing, while Low-Power signals have large swing. High-Speed functions are used for High-Speed Data traffic while low power functions are mostly used for control.
The AFX010x Product Family by SCALINX showcases a line of highly sophisticated Analog Front Ends (AFEs) that are perfect for applications where low power usage, superior signal integrity, and high sampling rates are crucial. Each AFE chip contains four independent channels, integrating a programmable input capacitance, a single-ended-input to differential-output Programmable Gain Amplifier (PGA), an offset DAC, an ADC, and a digital processor. The design promises high-level integration, ensuring a compact PCB footprint and significant power reduction, leveraging the SCCORETM technology. The AFX010x products bring user flexibility with features such as digitally-selectable bandwidths, varying programmable analog and digital gain ranges, and low harmonic distortion. With resolutions of up to 16-bit and sampling rates stretching to 5 Gsps, they stand out as top performers in environments requiring precise signal conversion. These AFEs are housed in a standard 12 mm × 12 mm, 196-Ball BGA package, which guarantees a pin-to-pin compatibility across the different variants. This family is tailored for a multitude of applications such as high-resolution data acquisition, USB and PC-based oscilloscopes, non-destructive testing tools, and more, offering a versatile solution for numerous sectors.
The Cap-less LDO Regulator by Archband Labs eliminates the need for bulky external capacitors, offering a streamlined solution for voltage regulation in electronic devices. The removal of capacitors results in a simplified design and reduced component costs, making this LDO regulator an attractive choice for compact applications. Despite its minimalist design, it maintains excellent performance in regulating voltage, ensuring stable power supply across different components. This functionality is vital for precision electronics used in portable devices, IoT systems, and embedded applications, where space and power efficiency are key considerations. By providing reliable voltage regulation without the added footprint of capacitors, this LDO regulator helps engineers tackle challenges related to size constraints and power management. As a result, it supports the development of smaller, more efficient electronic devices that align with modern consumer electronic trends.
This innovative chiplet offers a complete transmission solution, integrating a 16-channel 112G modulator and driver. The chip is designed for optimal performance in transmitting optical signals and features advanced digital control for precision tuning and stability. It is built to support systems requiring high bandwidth and efficient modulation, making it ideal for deployment in next-generation telecommunication networks. The combination of integrated modulator and driver ensures reduced power consumption and higher signal integrity, addressing the needs of modern data center applications.
The Bandgap offering from SkyeChip is a precise voltage reference circuit aimed at maintaining stability across variations in temperature and power supply. This analog IP delivers a consistent output voltage of about 0.9V with minimal deviation, making it crucial for applications requiring stability across a wide temperature range from -40C to 125C. Its low power consumption and robust design suit a variety of circuits where voltage stability is critical. The Bandgap circuit ensures effective performance in diverse conditions, contributing to the reliability and accuracy of the systems it supports.
The H-Series PHY supports the latest in high-speed memory interfaces, specifically engineered for comprehensive compatibility with a range of memory standards. By generating extensive support ecosystems including Design Acceleration Kits, this PHY aims to streamline integration and enhance performance for high-demand applications. With significant emphasis on minimizing die size, while optimizing both performance and latency, this PHY is particularly useful for graphics and compute-intensive operations where speed and reliability are paramount.
The 10G Ethernet MAC and PCS solution provides ultra-low latency Ethernet connectivity for FPGAs, specifically catering to applications requiring high-speed data transfer. Supporting throughput rates up to 10Gbps with minimal FPGA resource usage, this IP block is designed to integrate seamlessly with existing FPGA infrastructures, enhancing both performance and efficiency. The MAC/PCS integrates all necessary functionalities, reducing the need for additional components and ensuring a compact implementation. Chevin Technology's expertise allows for the offering of Ethernet IP solutions that are compliant with industry standards such as IEEE 802.3. The MAC/PCS leverages technologies that provide both ease of integration and scalability, which are pivotal for applications anticipating future growth or changes in data demands. In this way, the MAC/PCS maintains flexibility while ensuring reliable network communication. Focused on delivering quality performance, this MAC/PCS suit offers measures to minimize delay and jitter, crucial for applications where timing and reliability are paramount. It also includes advanced capabilities such as VLAN tagging and QoS support, enabling enhanced data traffic management and prioritization, which are vital in sophisticated network environments.
The agileTSENSE_D temperature sensor provides a digital output, extending the capabilities of traditional temperature sensing by incorporating digital signal processing. It retains the core analog sensing mechanism but wraps the output in a digital format for easier integration into modern digital systems, including IoT devices and data centers. This product is designed for environments where digital interfacing is critical. With its adaptable architecture, the agileTSENSE_D delivers precision temperature measurements over a broad operational range, ensuring that systems maintain optimal performance and safety. This functionality is crucial for thermal monitoring and management. Agile Analog designs are based on tried and tested architectures to ensure reliability and functionality. Our automated design methodology is programmatic, systematic and repeatable leading to analog IP that is more verifiable, more robust and more reliable. Our methodology also allows us to quickly re-target our IP to different process options. Our highly configurable and multi-node analog IP products are developed to meet the customer’s exact requirements. These digitally-wrapped and verified solutions can be seamlessly integrated into any SoC, significantly reducing complexity, time and costs.
Dolphin Technology's digital Delay-Locked Loop (DLL) IP offers a cutting-edge solution for precise timing and synchronization in digital circuits. This DLL IP spans a broad frequency range from 40 MHz to 1 GHz, providing flexibility to match specific application requirements. It comes with high precision, controlled through coarse and fine adjustments to reduce resolution error and improve delay accuracy. Designed as a fully digital solution, the DLL has features like external bypass and is developed to minimize EMI, ensuring high signal integrity in densely packed circuits. This suitability for digital integration makes it highly adaptable to various technology nodes, from older generation silicon to advanced process nodes. Ideal for high-speed digital designs, the DLL facilitates efficient communication within semiconductor devices, playing a crucial role in applications requiring synchronized timing across various parts of an integrated circuit. The extensive frequency range further ensures it meets diverse operational needs across a spectrum of industries.
SkyeChip’s High-Speed PLL excels in offering frequency synthesis for a wide range of applications. Capable of supporting reference clock frequencies from 100MHz to 350MHz, it incorporates a versatile FBDIV range, enhancing its division capabilities. The PLL can generate output frequencies ranging from 300MHz to 3.2GHz, marking its adaptability in high-speed data processing. It is designed to consume minimal power, making it an optimal choice in energy-constrained environments. This PLL ensures stability and precision across its frequency range, proving indispensable for modern high-speed digital designs.
The MXL-SR-LVDS is a high performance 4-channel LVDS Serializer implemented using digital CMOS technology. Both the serial and parallel data are organized into four channels. The parallel data width is programmable, and the input clock is 25MHz to 165MHz. The Serializer is highly integrated and requires no external components. It employs optional pre-emphasis to enable transmission over a longer distance while achieving low BER. The circuit is designed in a modular fashion and desensitized to process variations. This facilitates process migration, and results in a robust design.
The MIPITM V-NLM-01 is specialized for efficient image noise reduction using non-local mean (NLM) algorithms. This resourceful hard core supports parameterized search-window sizes and a customizable number of bits per pixel to enhance visual output quality remarkably. Designed to facilitate HDMI outputs at resolutions up to 2048×1080 at frame rates ranging from 30 to 60 fps, it delivers flexibility for numerous imaging applications. Its efficient implementation renders it suitable for tasks demanding high-speed processing and precise noise reduction in video outputs. The MIPITM V-NLM-01’s algebraic approach to noise reduction ensures exceptional image clarity and fidelity, making it indispensable for high-definition video processing environments. Its adaptability for variable processing requirements makes it a robust solution for current and future video standards.
XDS offers a specialized platform for the design and simulation of RF and microwave circuits. Its precision-focused tools provide detailed insights into electromagnetic performance critical to the development of modern RF systems. XDS excels in modeling the complex interactions inherent in these high-frequency designs, facilitating optimized circuit performance and reliability. With its robust simulation capabilities, XDS empowers designers to visualize and address potential performance challenges before practical implementation. This foresight in design allows for the crafting of circuits that are not only efficient but also resilient to real-world interferences and stresses. Engineers utilizing XDS benefit from its ability to streamline the design process, reducing development time while enhancing product functionality and performance. The tool is a vital asset for those focused on advancing RF technologies and maintaining best-in-class standards in microwave circuit design.
The ABX Platform by Racyics utilizes Adaptive Body Biasing (ABB) technology to drive performance in ultra-low voltage scenarios. This platform is tailored for extensive applications requiring ultra-low power as well as high performance. The ABB generator, along with the standard cells and SRAM IP, form the core of the ABX Platform, providing efficient compensation for process variations, supply voltage fluctuations, and temperature changes.\n\nFor automotive applications, the ABX Platform delivers notable improvements in leakage power, achieving up to 76% reduction for automotive-grade applications with temperatures reaching 150°C. The platform's RBB feature substantially enhances leakage control, making it ideal for automotive uses. Beyond automotive, the ABX Platform's FBB functionality significantly boosts performance, offering up to 10.3 times the output at 0.5V operation compared to non-bias implementations.\n\nExtensively tested and silicon-proven, the ABX Platform ensures reliability and power efficiency with easy integration into standard design flows. The solution also provides tight cornering and ABB-aware implementations for improved Power-Performance-Area (PPA) metrics. As a turnkey solution, it is designed for seamless integration into existing systems and comes with a free evaluation kit for potential customers to explore its capabilities before committing.
The RT990 represents RafaelMicro's prowess in developing optical communication components, specifically for Cable Television (CATV) systems. This TIA excels in signal amplification, essential for clear, high-fidelity video and audio transmission across optical networks.
The Mixel MIPI D-PHY IP (MXL-DPHY) is a high-frequency low-power, low cost, source-synchronous, physical layer compliant with the MIPI® Alliance Standard for D-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) Although primarily used for connecting cameras and display devices to a core processor, this MIPI PHY can also be used for many other applications. It is used in a master-slave configuration, where high-speed signals have a low voltage swing, and low-power signals have large swing. High-speed functions are used for high-speed data traffic while low-power functions are mostly used for control. The D-PHY is partitioned into a Digital Module – CIL (Control and Interface Logic) and a Mixed Signal Module. It is provided as a combination of Soft IP views (RTL, and STA Constraints) for Digital Module, and Hard IP views (GDSII/CDL/LEF/LIB) for the Mixed Signal Module. This unique offering of Soft and Hard IP permits architectural design flexibility and seamless implementation in customer-specific design flow. The CIL module interfaces with the protocol layer and determines the global operation of the lane module. The interface between the D-PHY and the protocol is called the PHY-Protocol Interface (PPI). During normal operation, the data lane switches between low-power mode and high-speed mode. Bidirectional lanes can also switch communication direction. The change of operating mode or direction requires enabling and disabling certain electrical functions. These enable and disable events do not cause glitches on the lines that would otherwise result in detections of incorrect signal levels. Therefore, all mode and direction changes occur smoothly, ensuring proper detection of the line signals. Mixel’s D-PHY is a complete PHY, silicon-proven at multiple foundries and multiple nodes. This MIPI PHY is fully integrated and has analog circuitry, digital, and synthesizable logic. Our D-PHY is built to support the MIPI Camera Serial Interface (CSI) and Display Serial Interface (DSI) using the PHY Protocol Interface (PPI). Mixel has provided this IP in many different configurations to accommodate different applications. The Universal Lane configuration can be used to support any allowed use-case, while other configurations are optimized for many different use cases such as Transmit only, Receive only, DSI, CSI, TX+ and RX+. Both TX+ and RX+ configurations support full-speed loopback operation without the extra area associated with a universal lane configuration.
The MXL-LVDS-DPHY-DSI-TX is a combo PHY that consists of a high-frequency low-power, low-cost, source-synchronous, Physical Layer supporting the MIPI® Alliance Standard for D-PHY and a high performance 4-channel LVDS Serializer implemented using digital CMOS technology. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) In LVDS mode, both the serial and parallel data are organized into 4 channels. The parallel data is 7 bits wide per channel. The input clock is 25MHz to 150MHz. The serializer is highly integrated and requires no external components. The circuit is designed in a modular fashion and desensitized to process variations. This facilitates process migration, and results in a robust design.
The MIPITM CSI2MUX-A1F operates as a sophisticated CSI2 video multiplexor designed to handle multiple camera inputs simultaneously. In compliance with CSI2 rev 1.3 and DPHY rev 1.2 standards, this multiplexor can manage inputs from up to four CSI2 cameras, consolidating them into a single comprehensive video stream. Engineered for high-efficiency video streamlining, it operates at a data rate of 4 x 1.5Gbps, ensuring real-time processing and efficient data throughput. The ability to integrate multiple video feeds into a single output makes it suitable for systems requiring complex multimedia handling and advanced video applications. This multiplexor provides solutions for systems where video data from various sources needs to be aggregated efficiently, optimizing space and resource utilization across video interfaces. Its seamless integration expands its utility across multiple paradigms, making it a staple in any comprehensive video system architecture.
The MVPM100 series represents a breakthrough in microsystem technologies by miniaturizing the precision of traditional gravimetric particle measurement into a compact form. Unlike optical sensors, it directly measures particle mass, cutting down on size while maintaining accuracy. This series is designed for applications requiring precision in air quality measurement, from industrial to commercial use, offering low power consumption and high accuracy in particle weight detection, making it ideal for modern air monitoring systems.
The RIOT100 is an adept human presence detection sensor crafted for energy-efficient applications like smart lighting and IoT ecosystems. This sophisticated sensor employs advanced radar technologies to precisely detect micro-movements, even when individuals are stationary. It operates seamlessly across varied lighting and weather conditions, providing unmatched reliability for both indoor and outdoor settings. Integrating seamlessly behind materials such as glass and wood, RIOT100 ensures privacy by offering fully anonymous detection without capturing visual data. This makes it ideal for environments that prohibit camera use, such as restrooms or certain workspaces. Its low-latency detection is crucial for applications requiring swift response times, further extending its versatility to escalator control and automatic door activation. The RIOT100 sensor's prowess is amplified by its wide and customizable detection range, accommodating up to 25 meters. This extensive range makes it particularly suited for security systems, where it can complement camera-based setups by triggering them upon detecting motion, thus conserving power and storage by keeping cameras in standby mode until necessary.
The Mixed-Signal CODEC offered by Archband Labs is engineered to enhance the performance of audio and voice devices, handling conversions between analog and digital signals efficiently. Designed to cater to various digital audio interfaces such as PWM, PDM, PCM conversions, I2S, and TDM, it ensures seamless integration into complex audio systems. Well-suited for low-power and high-performance applications, this CODEC is frequently deployed in audio systems across consumer electronics, automotive, and edge computing devices. Its robust design ensures reliable operation within wearables, smart home devices, and advanced home entertainment systems, handling pressing demands for clarity and efficiency in audio signal processing. Engineers benefit from its extensive interfacing capabilities, supporting a spectrum of audio inputs and outputs. The CODEC's compact architecture ensures ease of integration, allowing manufacturers to develop innovative and enhanced audio platforms that meet diverse market needs.
The RF/Analog offerings from Certus Semiconductor represent cutting-edge solutions designed to maximize the potential of wireless and high-frequency applications. Built upon decades of experience and extensive patent-backed technology, these products comprise individual RF components and full-chip transceivers that utilize sophisticated analog technology. Certus's solutions include silicon-proven RF IP and full-chip RF products that offer advanced low-power front-end capabilities for wireless devices. High-efficiency transceivers cover a range of standards like LTE and WiFi, alongside other modern communication protocols. The design focus extends to optimizing power management units (PMU), RF signal chains, and phase-locked loops (PLLs), providing a full-bodied solution that meets high-performance criteria while minimizing power requirements. With the ability to adapt to various process nodes, products in this category are constructed to offer definitive control over power output, noise figures, and gain. This adaptability ensures that they align seamlessly with diverse operational requirements, while cutting-edge developments in IoT and radar technologies exemplify Certus's commitment to innovation. Their RF/Analog IP line is a testament to their leadership in ultra-low power solutions for next-generation wireless applications.
The agileREF consists of a bandgap reference core together with a bandgap reference voltage generator (VREF), VREF replica current generators and bias current generators. The number of output bias currents can be specified up to a maximum of 16 configurable outputs. Agile Analog designs are based on tried and tested architectures to ensure reliability and functionality. Our automated design methodology is programmatic, systematic and repeatable leading to analog IP that is more verifiable, more robust and more reliable. Our methodology also allows us to quickly re-target our IP to different process options. Our highly configurable and multi-node analog IP products are developed to meet the customer’s exact requirements. These digitally-wrapped and verified solutions can be seamlessly integrated into any SoC, significantly reducing complexity, time and costs.
The Mixel MIPI C/D-PHY combo IP (MXL-CPHY-DPHY) is a high-frequency low-power, low cost, physical layer compliant with the MIPI® Alliance Standard for C-PHY and D-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The PHY can be configured as a MIPI Master or MIPI Slave, supporting camera interface CSI-2 v1.2 or display interface DSI v1.3 applications in the D-PHY mode. It also supports camera interface CSI-2 v1.3 and display interface DSI-2 v1.0 applications in the C-PHY mode. The high-speed signals have a low voltage swing, while low-power signals have large swing. High-Speed functions are used for high-speed data traffic while low-power functions are mostly used for control. The C-PHY is based on 3-Phase symbol encoding technology, delivering 2.28 bits per symbol over three-wire trios, operating with a symbol rate range of 80 to 4500 Msps per lane, which is the equivalent of about 182.8 to 10260 Mbps per lane. The D-PHY supports a bit rate range of 80 to 1500 Mbps per Lane without deskew calibration, and up to 4500 Mbps with deskew calibration. The low-power mode and escape mode are the same in both the D-PHY and C-PHY modes. To minimize EMI, the drivers for low-power mode are slew-rate controlled and current limited. The data rate in low-power mode is 10 Mbps. For a fixed clock frequency, the available data capacity of a PHY configuration can be increased by using more lanes. Effective data throughput can be reduced by employing burst mode communication. Mixel’s C-PHY/D-PHY combo is a complete PHY, silicon-proven at multiple foundries and multiple nodes. The C/D-PHY is fully integrated and has analog circuitry, digital, and synthesizable logic.
The MVH4000 series is a line of highly precise and fully calibrated humidity and temperature sensors. Utilizing a unique Silicon Carbide MEMS technology, these sensors boast outstanding long-term stability, quick response times, and low power usage. Their compact size makes them ideal for applications where space is at a premium, offering significant advantages in battery-powered and time-sensitive environments. Long-term reliability, minimal power draw, and robustness are key features of the MVH4000 sensors, making them a top choice for demanding applications with critical process controls.
The ADQ35 is a versatile dual-channel digitizer designed for high-performance data acquisition at a sampling rate of 10 GSPS. With its flexible configuration, the ADQ35 supports both a two-channel operation at 5 GSPS and a single-channel mode at the full 10 GSPS. The device is DC-coupled with a bandwidth capacity of up to 2.5 GHz, which suits it for a variety of conditions where signal integrity is key. A highlight of the ADQ35 is its open onboard Xilinx Kintex Ultrascale KU115 FPGA, offering extensive capabilities for custom digital signal processing. This device also facilitates peer-to-peer streaming at a rapidity of 14 Gbyte/s, enabling direct and efficient data transfer to GPUs or CPUs. This makes it exceptional for applications that rely on large-scale data handling and processing efficiency. The ADQ35 is engineered for use in various high-demand applications such as Time-of-Flight Mass Spectrometry, LiDAR systems, and scientific instrumentation. This flexibility is further enhanced by an array of standard and optional firmware packages, which empower users to tailor the device's capabilities according to specific project needs.
The CT25203 serves as a critical part of Canova Tech's Ethernet solutions, providing an analog front-end compliant with the IEEE 802.3cg 10BASE-T1S standard. By using this IP, device designers can achieve outstanding electromagnetic compatibility performance crucial for modern communication systems' stability. Supporting a high-voltage process technology, CT25203 is optimized for compact devices with an 8-pin package, ideal for industrial and automotive environments that require dependable connectivity and robust communication links. Its architecture ensures seamless communication over the 3-pin OPEN Alliance interface with host devices like MCUs and Ethernet switches. These features allow it to meet the rigorous demands of industries requiring compact and efficient solutions, resulting in reliable and efficient performance that integrates seamlessly with other Canova Tech IP offerings, thereby simplifying design and reducing time-to-market.
The ePHY-5616 is engineered for high-performance applications requiring efficient data control and operations, capable of supporting data rates ranging from 1Gbps to 56Gbps. This versatile architecture is adaptable to various applications, offering configurable bandwidth to meet diverse connectivity needs. Leveraging a 16/12nm node process technology, it delivers optimized power efficiency and data integration solutions. Designed to manage a wide insertion loss range, the ePHY-5616 boasts a scalable approach to data handling. It incorporates advanced clock data recovery and reliability mechanics ensuring minimal downtime and exceptional data signal integrity. This makes it a standout choice for enterprise networking, data centers, 5G applications, and other sectors reliant on sustained data throughput and proficient error correction. Utilizing a programmable DSP-based architecture, the ePHY-5616 is crafted to meet extensive application requirements. It uses proprietary algorithms to simplify integration efforts and accelerate system deployment. Supporting Direct Attached Cable and Optical Drive, it is highly suitable for dynamic, state-of-the-art networking applications demanding high data transmission fidelity and reliability.
The MXL-DS-LVDS is a high performance 4-channel LVDS Deserializer implemented using digital CMOS technology. Both the serial and parallel data are organized into four channels. The parallel data can be 7 or 10 bits wide per channel. The input clock is 25MHz to 165MHz. The De-serializer is highly integrated and requires no external components. Great care was taken to insure matching between the Data and Clock channels to maximize the deserializer margin. The circuit is designed in a modular fashion and desensitized to process variations. This facilitates process migration, and results in a robust design.
Designed for FPGA contexts, the MIPITM SVTPlus-8L-F is a sophisticated 8-lane second-generation serial video transmitter. Adhering to the stringent requirements of the CSI2 rev 2.0 and DPHY rev 1.2 standards, this transmitter delivers data at an impressive 12Gbps. It stands out for its seamless integration into video systems, offering unparalleled data transmission capabilities and upholding the fidelity of transmitted signals. The transmitter is designed to support high data loads, ensuring that it can handle intensive video applications with ease. Its design not only facilitates robust data rates but also ensures that the transmitted signals maintain clarity and accuracy, essential for advanced video processing systems. By incorporating modern design methodologies, the MIPITM SVTPlus-8L-F ensures reliable data flow, minimal transmission errors, and enhanced system performance. This transmitter is a pivotal addition to any advanced digital video system, providing essential high-speed data transmission features.
The THOR Toolbox is designed to provide robust NFC and UHF connectivity solutions, enabling efficient wireless communication across devices. This toolbox is crucial for developing products that require seamless integration of near-field communication and ultra-high-frequency radio tags, which are instrumental in applications such as inventory management and product tracking. THOR Toolbox facilitates easy development and integration, offering a complete set of tools necessary for prototyping and testing NFC and UHF features. It allows engineers to validate their design concepts quickly and effectively, ensuring that the final product meets all necessary specifications and standards. By utilizing the THOR Toolbox, designers can expedite the design process, minimize time-to-market, and enhance the functionality and reliability of their products. It is particularly valuable in environments where data security and seamless connectivity are paramount, ensuring that products are future-proofed for evolving standards and requirements in communication technology.