TUNGA is an innovative multi-core RISC-V SoC designed to advance high-performance computing and AI workflows using posit arithmetic. This SoC is equipped with multiple CRISP-cores, enabling efficient real-number computation with the integration of posit numerical representations. The TUNGA system exploits the power of the posit data type, known for offering enhanced computational precision and reduced bit-utilization compared to traditional formats.
A standout feature of TUNGA is its fixed-point accumulator structure, QUIRE, which ensures exact calculation of dot products for vector lengths extending to approximately 2 billion elements. This precision makes it highly suitable for tasks in cryptography, AI, and data-intensive computations that require high accuracy. In addition, TUNGA leverages a pool of FPGA gates designed for hardware reconfiguration, facilitating the acceleration of processes such as data center services by optimizing task execution paths and supporting non-standard data types.
TUNGA is fully programmable and supports various arithmetic operations for specialized computational needs, particularly within high-demand sectors like AI and machine learning, where processing speed and accuracy are critical. By integrating programmability through FPGA gates, users can tailor the SoC for specific workloads, thereby allowing Calligo's TUNGA to stand out as an adaptable element of next-generation cloud and edge computing solutions.