Find IP Sell IP AI Assistant Chip Talk About Us
Log In

All IPs > Interface Controller & PHY > AMBA AHB / APB/ AXI

AMBA AHB, APB, AXI Semiconductor IP Solutions

AMBA, which stands for Advanced Microcontroller Bus Architecture, is a far-reaching and well-established open-standard, on-chip interconnect specification used widely in the design and structuring of system-on-chip (SoC) technologies. Among the most popular protocols under this architecture are AHB (Advanced High-performance Bus), APB (Advanced Peripheral Bus), and AXI (Advanced eXtensible Interface). These protocols facilitate effective communication between various components of a digital system, ensuring optimal performance and scalability.

**AHB, APB, and AXI Semiconductor IPs**

*AMBA AHB* is specifically designed for high-performance and high-bandwidth requirements. It's a parallel bus interface that is commonly employed for connecting processors and other high-speed components in a SoC. AHB IPs ensure that data is transferred efficiently across the components, making them ideal for applications where speed and reliability are crucial.

*AMBA APB* is tailored for low power and less complex communication needs. It is often used for interfacing with peripheral devices that do not require high throughput, such as UARTs or low-speed memory controllers. APB semiconductor IPs are valued for their simplicity and low power consumption, often being the choice for battery-operated or portable devices.

*AMBA AXI* is characterized by its advanced features, supporting high data bandwidth and flexible configurations. AXI IPs are used where the highest performance is needed, leveraging features like burst transactions, multiple outstanding addresses, and out-of-order transaction completion, making it suitable for complex and demanding tasks.

Integrating these semiconductor IPs into your system ensures that you leverage their specialized features for increased efficiency and performance. In products that require robust, flexible, and scalable communication channels, AMBA interface controllers and PHYs provide the backbone necessary to build systems that can meet current and future demands.

All semiconductor IP
284
IPs available
Vendor

LVDS IP

The LVDS IP is designed to provide Low Voltage Differential Signaling interfaces, a method known for reducing electromagnetic interference while enabling high-speed data transfer across circuits. Suitable for applications in displays and telecommunications, this IP supports robust signal integrity, adhering to strict technical and operational standards. Engineered for versatility, the LVDS IP operates efficiently over long distances, making it ideal for complex electronic environments where signal fidelity is paramount. Its adaptability allows for seamless integration into various system architectures. This IP focuses on minimizing power consumption without sacrificing performance, addressing the energy efficiency needs of modern electronic systems. Its compatibility and advanced design ensure that it meets diverse application requirements where high-speed, low-noise data communication is critical.

Sunplus Technology Co., Ltd.
AMBA AHB / APB/ AXI
View Details

AMBA APB Target

Advanced Peripheral Bus (APB) is one of the Advanced Microcontroller Bus Architecture (AMBA) family protocols. It is a low-cost interface that is designed for low power consumption and interface simplicity. Unlike AHB, it is a non-pipelined protocol for connecting low-bandwidth peripherals. Mostly used to link external peripherals to the SOC. Every APB transfer requires at least two clock cycles (SETUP Cycle and ACCESS Cycle) to finish. The APB interface is designed for accessing the programmable control registers of peripheral devices. The APB protocol has two independent data buses, one for read data and one for write data. The buses can be 8, 16, or 32 bits wide. The read and write data buses must have the same width. Data transfers cannot occur concurrently because the read data and write data buses do not have their own individual handshake signals.

Agnisys, inc.
All Foundries
All Process Nodes
AMBA AHB / APB/ AXI
View Details

SerDes Interfaces

Silicon Creations' SerDes Interfaces are crafted to handle high-speed data transmission challenges over varied processes, ranging from 12nm to 180nm. Addressing multiple protocols such as CPRI, PCIe, and SATA, these interfaces demonstrate flexibility by supporting data transmission speeds from 100 Mbps to beyond 32 Gbps. The architecture incorporates a host of advanced features including adaptive equalization techniques and programmable de-serialization widths, making it stand out in terms of performance and signal integrity even under challenging conditions. With ultra-low latency PMAs, they sustain excellent operational speed and efficiency, imperative for sophisticated communication applications. Moreover, Silicon Creations partners with leading entities to provide comprehensive solutions, including complete PCIe PHY integrations. This synergy ensures that SerDes Interfaces are fully optimized for operational excellence, delivering stable and reliable communication signals. With an emphasis on low power and minimized area requirements, they cater to burgeoning industry needs for power-efficient and space-conservative designs.

Silicon Creations
TSMC
16nm, 180nm
AMBA AHB / APB/ AXI, MIPI, Multi-Protocol PHY, PCI, SATA, USB
View Details

AMBA AHB Target

AMBA AHB is a bus interface designed for high-performance synthesizable applications. It specifies the interface between components such as initiator , interconnects, and targets. AMBA AHB incorporates the features needed for high-performance, high clock frequency systems. The most common AHB targets are internal memory devices, external memory interfaces, and high-bandwidth peripherals.

Agnisys, inc.
All Foundries
All Process Nodes
AMBA AHB / APB/ AXI
View Details

Bus Convertors

The bus converter module transforms wide initiator data buses to smaller target data buses or vice-versa. A narrow target on a wide bus, only requires external logic and no internal design changes. * APB: 32-bit wide initiator data buses to 16-bit target data buses. * AHB: 64-bit wide initiator data buses to 32-bit target data buses. * AXI: 256-bit wide initiator data buses to 64-bit target data buses A wide target on a narrow bus, only requires external logic and no internal design changes. * APB: 16-bit wide initiator data buses to 32-bit target data buses. * AHB: 32-bit wide initiator data buses to 64-bit target data buses. * AXI: 64-bit wide initiator data buses to 256-bit target data buses.

Agnisys, inc.
AMBA AHB / APB/ AXI
View Details

AMBA AXI Target

The Advanced eXtensible Interface(AXI) bus is a high-performance parallel bus that connects on-chip peripheral circuits (or IP blocks) to processor cores. The AXI bus employs "channels" to divide read and write transactions into semi-independent activities that can run at their own pace. The Read Address and Read Data channels send data from the target to the initiator, whereas the Write Address, Write Data, and Write Response channels transfer data from the initiator to the target.

Agnisys, inc.
AMBA AHB / APB/ AXI
View Details

Exostiv

Exostiv offers comprehensive functionality for in-depth monitoring and capturing of internal FPGA signals at operational speeds. It enables engineers to conduct precise and cost-effective analysis of their FPGA designs in realistic environments, overcoming the limitations of traditional simulation approaches. By providing extensive data capture abilities, Exostiv is an essential tool for minimizing engineering costs and ensuring the highest levels of design integrity. At the core of Exostiv is its versatility in compatibility, supporting a wide range of FPGA devices and ensuring adaptability to various prototyping boards. Its integration is bolstered by a range of connector options—including QSFP28 and Samtec ARF-6—providing small-footprint solutions ideal for space-tight configurations. With impressive data rates and bandwidth options, Exostiv propels performance analysis to new heights by allowing accurate trace capture and design visualization at speed. Engineers benefit from Exostiv’s ability to perform real-time signal monitoring directly on FPGA prototypes. This leads to substantial reductions in potential bugs reaching production, as the tool highlights discrepancies that might not be visible during simulations. Whether used for debugging or for SoC pre-production testing, Exostiv plays a vital role in streamlining engineering workflows, offering a blend of ease-of-use and powerful capabilities to address the most demanding validation scenarios.

Exostiv Labs
AMBA AHB / APB/ AXI, Processor Core Independent
View Details

Origin E1

The Origin E1 is an optimized neural processing unit (NPU) targeting always-on applications in devices like home appliances, smartphones, and security cameras. It provides a compact, energy-efficient solution with performance tailored to 1 TOPS, making it ideal for systems needing low-power and minimal area. The architecture is built on Expedera's unique packet-based approach, which enables enhanced resource utilization and deterministic performance, significantly boosting efficiency while avoiding the pitfalls of traditional layer-based architectures. The architecture is fine-tuned to support standard and custom neural networks without requiring external memory, preserving privacy and ensuring fast processing. Its ability to process data in parallel across multiple layers results in predictive performance with low power and latency. Always-sensing cameras leveraging the Origin E1 can continuously analyze visual data, facilitating smoother and more intuitive user interactions. Successful field deployment in over 10 million devices highlights the Origin E1's reliability and effectiveness. Its flexible design allows for adjustments to meet the specific PPA requirements of diverse applications. Offered as Soft IP (RTL) or GDS, this engine is a blend of efficiency and capability, capitalizing on the full scope of Expedera's software tools and custom support features.

Expedera
13 Categories
View Details

LPDDR4/4X/5 Secondary/Slave PHY

The secondary or slave PHY interface, specifically designed for LPDDR4/4X/5, serves as a pivotal element for AI processors and alternative ASICs seeking the latest in high-speed, low-power LPDDR interface protocols. This IP facilitates seamless data interchange across various devices, compliant with established JEDEC standards. While initially crafted for the 7nm TSMC node, this PHY can be adapted for other logical processes, making it suitable for a diverse array of memory types ranging from traditional DRAM and SRAM to innovative non-volatile memories. This adaptability illustrates its robust application scope within modern technological frameworks.

Green Mountain Semiconductor Inc.
TSMC
7nm
AMBA AHB / APB/ AXI, DDR, SDRAM Controller, USB
View Details

eSi-Connect

The eSi-Connect is a suite of AMBA peripheral IP cores designed to enhance connectivity and integration in Systems on Chip (SoCs). Directed towards simplifying the development process, eSi-Connect supports standard interfaces like AXI, AHB, and APB, making it a comprehensive toolset for various system integrations. This suite includes multiple memory controllers, off-chip interfaces, and utility functions such as timer and watchdogs, enabling developers to customize and scale solutions efficiently. The peripherals within the eSi-Connect ensure compatibility with a broad range of embedded systems while maintaining high performance and power efficiency. With an array of functionalities like GPIO, Ethernet MAC, and various serial interfaces, it provides low-level software drivers optimizing for real-time SoC deployment. Leveraging eSi-Connect, design teams can accelerate time-to-market with builds tailored to specific application needs, ensuring robustness and scalability.

eSi-RISC
AMBA AHB / APB/ AXI, I2C, Input/Output Controller, LCD Controller, SATA, USB
View Details

Multi-Protocol SERDES

The Multi-Protocol SERDES offered by Pico Semiconductor is a versatile solution capable of handling a variety of communication protocols. This series of SERDES includes a 4-channel configuration that supports data rates up to 32Gbps, designed for integration with XAUI, RXAUI, and SGMII. It is compatible with multiple process nodes provided by foundries like TSMC and GF, offering robust performance across different semiconductor environments. These SERDES are crafted to meet high-performance metrics, capturing speeds up to 16Gbps and 6.5Gbps across various models, with advanced versions reaching up to 32Gbps. This exceptional range not only ensures compatibility with current technologies but also prepares systems for future updates, sustaining high data throughput. By delivering reliable high-speed data transmission capabilities, the Multi-Protocol SERDES from Pico Semiconductor is integral for networking, high-speed computing, and data storage applications, where efficient and speedy data transfer is paramount.

Pico Semiconductor, Inc.
GLOBALFOUNDARIES, TSMC
16nm, 45nm, 65nm
AMBA AHB / APB/ AXI, Interlaken, MIPI, Multi-Protocol PHY, PCI
View Details

Crossbars Interconnect

An interconnect component connects multi initiators and multi targets in a system. A single initiator system simply requires a decoder and multiplexor.

Agnisys, inc.
AMBA AHB / APB/ AXI
View Details

Metis AIPU M.2 Accelerator Module

The Metis AIPU M.2 accelerator module by Axelera AI is engineered for AI inference on edge devices with power and budget constraints. It leverages the quad-core Metis AIPU, delivering exceptional AI processing in a compact form factor. This solution is ideal for a range of applications, including computer vision in constrained environments, providing robust support for multiple camera feeds and parallel neural networks. With its easy integration and the comprehensive Voyager SDK, it simplifies the deployment of advanced AI models, ensuring high prediction accuracy and efficiency. This module is optimized for NGFF (Next Generation Form Factor) M.2 sockets, boosting the capability of any processing system with modest space and power requirements.

Axelera AI
2D / 3D, AI Processor, AMBA AHB / APB/ AXI, CPU, Processor Core Dependent, Vision Processor, WMV
View Details

Metis AIPU PCIe AI Accelerator Card

The PCIe AI Accelerator Card powered by Metis AIPU offers unparalleled AI inference performance suitable for intensive vision applications. Incorporating a single quad-core Metis AIPU, it provides up to 214 TOPS, efficiently managing high-volume workloads with low latency. The card is further enhanced by the Voyager SDK, which streamlines application deployment, offering an intuitive development experience and ensuring simple integration across various platforms. Whether for real-time video analytics or other demanding AI tasks, the PCIe Accelerator Card is designed to deliver exceptional speed and precision.

Axelera AI
2D / 3D, AI Processor, AMBA AHB / APB/ AXI, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Vision Processor, WMV
View Details

AHB-Lite APB4 Bridge

The AHB-Lite APB4 Bridge by Roa Logic represents a pivotal element in connecting different bus standards, essentially acting as a bridge between the AMBA 3 AHB-Lite v1.0 and the AMBA APB v2.0 protocols. This interconnect component is designed to facilitate data transfer and communication between various system components, ensuring efficiency and compatibility across multiple architectures. As a parameterized soft IP core, the bridge allows for extensive customization, tailoring bandwidth and performance requirements to suit specific application demands in both FPGA and ASIC designs. This versatility makes it ideal for use in diverse environments where protocol conversion is necessary. Supporting an array of peripherals, the bridge enables seamless integration and operation within larger, complex architectures. Its design reduces latency and power consumption, making it a preferred choice for creating energy-efficient and high-performance systems. Available for non-commercial licensing, this bridge epitomizes Roa Logic’s commitment to innovation through practical, user-focused IP solutions.

Roa Logic BV
AMBA AHB / APB/ AXI, Embedded Security Modules, Interlaken, Smart Card
View Details

Aries fgOTN Processors

The Aries fgOTN processor family is engineered according to the ITU-T G.709.20 fgOTN standard. This line of processors handles a variety of signals, including E1/T1, FE/GE, and STM1/STM4, effectively monitoring and managing alarms and performance metrics. Aries processors excel at fine-grain traffic aggregation, efficiently channeling fgODUflex traffic across OTN lines to support Ethernet, SDH, PDH client services. Their capacity to map signals to fgODUflex containers, which are then multiplexed into higher order OTN signals, demonstrates their versatility and efficiency. By allowing cascaded configurations with other Aries devices or Apodis processors, Aries products optimize traffic routes through OTN infrastructures, positioning them as essential components in optical networking and next-generation access scenarios.

Tera-Pass
AMBA AHB / APB/ AXI, HBM, NAND Flash, PCMCIA, Receiver/Transmitter, SAS
View Details

Origin E8

The Origin E8 NPU by Expedera is engineered for the most demanding AI deployments such as automotive systems and data centers. Capable of delivering up to 128 TOPS per core and scalable to PetaOps with multiple cores, the E8 stands out for its high performance and efficient processing. Expedera's packet-based architecture allows for parallel execution across varying layers, optimizing resource utilization, and minimizing latency, even under strenuous conditions. The E8 handles complex AI models, including large language models (LLMs) and standard machine learning frameworks, without requiring significant hardware-specific changes. Its support extends to 8K resolutions and beyond, ensuring coverage for advanced visualization and high-resolution tasks. With its low deterministic latency and minimized DRAM bandwidth needs, the Origin E8 is especially suitable for high-performance, real-time applications. The high-speed processing and flexible deployment benefits make the Origin E8 a compelling choice for companies seeking robust and scalable AI infrastructure. Through customized architecture, it efficiently addresses the power, performance, and area considerations vital for next-generation AI technologies.

Expedera
12 Categories
View Details

10G TCP Offload Engine (TOE)

This high-powered TCP Offload Engine aims to deliver superior efficiency by offloading TCP processing from the CPU. By integrating a MAC interface, it reduces processing latencies and broadens throughput, thereby optimizing network operations substantially. This IP suite maintains rapid data processing speeds and addresses a broad array of network optimization needs for today's high-demand environments. Optimized for high-speed networking environments, the TOE offers unprecedented latency reduction through its hardware-accelerated design. The integration of a refined MAC interface plays a crucial role in translating packet data into usable formats swiftly, a crucial factor in enhancing overall system performance, particularly in data-intensive industries. This technology’s edge lies in its ability to seamlessly deliver full data transfer acceleration. Its design caters to enterprises that prioritize low-processing overheads and need to maximize network efficiency without the traditional constraints of higher CPU usage. Thus, Intilop's 10G TCP Offload Engine represents a benchmark in high-performance data handling systems.

Intilop Corporation
AMBA AHB / APB/ AXI, Ethernet, PCI, SATA
View Details

Ethernet Real-Time Publish-Subscribe (RTPS) IP Core

The Ethernet Real-Time Publish-Subscribe (RTPS) Core is designed to deliver complete hardware solutions for the Ethernet RTPS protocol. It stands out by providing reliable networking capabilities needed in environments that demand stringent real-time data exchanges. This core enhances data communication efficiencies by facilitating rapid publish-subscribe interactions within complex network ecosystems. Optimized for environments that require high data throughput and consistency, it ensures that data exchanges are executed with precision and timeliness. Its architectural elegance supports seamless integration into existing networks, promoting a resilient exchange of information crucial for operational continuity. This core is pivotal for ensuring robust communication frameworks in mission-critical systems where delays and data losses are unacceptable.

New Wave Design
AMBA AHB / APB/ AXI, Ethernet, Input/Output Controller, PCI
View Details

H.264 FPGA Encoder and CODEC Micro Footprint Cores

The H.264 FPGA Encoder and CODEC Micro Footprint Cores from A2e Technologies are industry-leading solutions optimized for high-speed video encoding with minimal latency. Specially tailored for FPGA applications, this core ensures compliance with the H.264 Baseline and offers configurations to suit varying performance needs, such as low-cost evaluation licenses for flexibility. These cores are noted for their exceptionally compact size and rapid processing capabilities, enabling them to achieve 1080p at 60 frames per second with remarkable efficiency. One of the project's standout features is the 1ms latency at 1080p30, which is among the fastest in the industry. This core also supports custom configurations, allowing adjustments to pixel depth, resolution, and more, making it a versatile choice for developers looking to integrate video encoding in their systems. Moreover, these cores are ITAR compliant, offering a secure and adaptable solution for high-performance FPGA design. The scalability and customization options, including support for various pixel depths and resolutions, make these H.264 cores suitable for a wide array of applications, from real-time video streaming to embedded systems in industrial automation. By leveraging this advanced technology, A2e Technologies provides a robust solution that meets stringent industry standards and addresses specific customer needs effectively.

A2e Technologies
AMBA AHB / APB/ AXI, Arbiter, H.264, Multiprocessor / DSP, TICO, USB
View Details

PDM-to-PCM Converter

The PDM-to-PCM Converter offers an innovative solution for converting pulse-density modulation signals into pulse-code modulation formats, supporting the growing demand in modern audio processing systems. This converter is indispensable for applications where maintaining audio integrity is paramount, such as digital microphones and audio streaming devices. Engineered for efficiency, the converter handles high-definition audio with minimal distortion, ensuring the audio signal remains true to the source. The design incorporates various filters that minimize unwanted artifacts, a crucial feature for any high-end audio system requiring pristine sound quality. This converter supports a wide array of audio interfaces, facilitating its integration into diverse audio frameworks—from IoT devices to advanced multi-channel audio systems. Moreover, its low-power design makes it ideal for use in portable devices, enabling manufacturers to develop products that meet both performance and power consumption metrics.

Archband Labs
AMBA AHB / APB/ AXI, Audio Interfaces, Coder/Decoder, CSC, Input/Output Controller, Receiver/Transmitter
View Details

Connected Vehicle Solutions

KPIT's Connected Vehicle Solutions enable OEMs to harness the power of integrated vehicle-to-cloud connectivity and data analytics. By leveraging cloud-native infrastructure and edge analytics, these solutions facilitate innovative data management, enhance cybersecurity, and ensure regulatory compliance. KPIT helps automakers streamline data flows from connected vehicles, optimizing operational efficiency while creating new revenue streams through advanced analytics and connectivity services.

KPIT Technologies
AMBA AHB / APB/ AXI, USB
View Details

NuLink Die-to-Die PHY for Standard Packaging

Eliyan's NuLink Die-to-Die PHY technology represents a significant advancement in chiplet interconnect solutions. Designed for standard packaging, this innovative PHY IP delivers robust high-performance with low power consumption, a balance that is crucial for modern semiconductor designs. The NuLink PHY supports multiple industry standards, including the Universal Chiplet Interface Express (UCIe) and Bunch of Wires (BoW), ensuring it can cater to a wide range of applications. A standout feature of the NuLink PHY is its simultaneous bidirectional (SBD) signaling capability, which allows data to be sent and received over the same wire at the same time, effectively doubling bandwidth. This makes it an ideal solution for data-intensive applications such as AI training and inference, particularly those requiring ultra-low latency and high reliability. The technology is also adaptable for different substrates, including both silicon and organic, offering designers flexibility in their packaging approaches. NuLink's architecture stems from extensive industry insights and is informed by Eliyan’s commitment to innovation. The platform provides a power-efficient and cost-effective alternative to traditional advanced packaging solutions. It achieves interposer-like performance metrics without the complexity and cost associated with such methods, enabling operational efficiency and reduced time-to-market for new semiconductor products.

Eliyan
All Foundries
4nm, 7nm
AMBA AHB / APB/ AXI, CXL, D2D, MIPI, Network on Chip, Processor Core Dependent
View Details

pPLL03F-GF22FDX

The pPLL03F-GF22FDX is a state-of-the-art, all-digital Fractional-N PLL crafted specifically for performance computing environments, offering low jitter and compact design. This advanced PLL is optimized for clocking applications that demand precise timing, functioning at frequencies of up to 4GHz. Its architecture makes it an excellent choice for driving performance computers and ADC/DAC systems where moderate SNR is essential. Constructed utilizing Perceptia's robust second-gen all-digital PLL technology, it delivers consistent results across a broad spectrum of process variations and conditions. Noteworthy for its tiny area, the pPLL03F enables system designers to efficiently manage complex multi-domain clock systems utilizing shared power supplies. Each instance includes a built-in power regulator, facilitating seamless sharing of power across various blocks relying on its clock outputs. Featuring dual PLL outputs through distinct postscalers, it's designed for easy integration into SOC systems while being highly testable, supporting industry-standard flows. It is usable in both integer-N and fractional-N modes, offering substantial flexibility in synchronizing input-output clock frequencies at the system level. The design encompasses compactness and effectiveness, ensuring low consumption while maintaining superior performance.

Perceptia Devies Australia
GLOBALFOUNDARIES, Intel Foundry, Samsung, TSMC, UMC
10nm, 16nm, 28nm, 55nm
AMBA AHB / APB/ AXI, Clock Generator, Clock Synthesizer, PLL
View Details

GenAI v1

RaiderChip's GenAI v1 is a pioneering hardware-based generative AI accelerator, designed to perform local inference at the Edge. This technology integrates optimally with on-premises servers and embedded devices, offering substantial benefits in privacy, performance, and energy efficiency over traditional hybrid AI solutions. The design of the GenAI v1 NPU streamlines the process of executing large language models by embedding them directly onto the hardware, eliminating the need for external components like CPUs or internet connections. With its ability to support complex models such as the Llama 3.2 with 4-bit quantization on LPDDR4 memory, the GenAI v1 achieves unprecedented efficiency in AI token processing, coupled with energy savings and reduced latency. What sets GenAI v1 apart is its scalability and cost-effectiveness, significantly outperforming competitive solutions such as Intel Gaudi 2, Nvidia's cloud GPUs, and Google's cloud TPUs in terms of memory efficiency. This solution maximizes the number of tokens generated per unit of memory bandwidth, thus addressing one of the primary limitations in generative AI workflow. Furthermore, the adept memory usage of GenAI v1 reduces the dependency on costly memory types like HBM, opening the door to more affordable alternatives without diminishing processing capabilities. With a target-agnostic approach, RaiderChip ensures the GenAI v1 can be adapted to various FPGAs and ASICs, offering configuration flexibility that allows users to balance performance with hardware costs. Its compatibility with a wide range of transformers-based models, including proprietary modifications, ensures GenAI v1's robust placement across sectors requiring high-speed processing, like finance, medical diagnostics, and autonomous systems. RaiderChip's innovation with GenAI v1 focuses on supporting both vanilla and quantized AI models, ensuring high computation speeds necessary for real-time applications without compromising accuracy. This capability underpins their strategic vision of enabling versatile and sustainable AI solutions across industries. By prioritizing integration ease and operational independence, RaiderChip provides a tangible edge in applying generative AI effectively and widely.

RaiderChip
GLOBALFOUNDARIES, TSMC
28nm, 65nm
AI Processor, AMBA AHB / APB/ AXI, Audio Controller, Coprocessor, CPU, Ethernet, Microcontroller, Multiprocessor / DSP, PowerPC, Processor Core Dependent, Processor Cores
View Details

AHB-Lite Multilayer Switch

The AHB-Lite Multilayer Switch from Roa Logic is engineered for high-efficiency performance, serving as an interconnect fabric that supports numerous bus masters and slaves. This architecture is crucial in systems that require low latency data processing and robust bandwidth capacities to handle heavy data traffic between multiple modules. Designed to handle a virtually unlimited number of masters and slaves, this switch enhances system scalability, allowing the seamless expansion of functionalities in complex SOC configurations. Its low latency characteristics ensure data is transmitted with minimal delay, optimizing system performance and stability. Developed for both ASIC and FPGA implementations, this product aligns with AMBA interconnect specifications, ensuring compatibility and simplifying integration into existing designs. Its free non-commercial licensing promotes broader accessibility, encouraging experimentation and adoption in various technological projects.

Roa Logic BV
AMBA AHB / APB/ AXI, Embedded Security Modules
View Details

ePHY-5616

The ePHY-5616 is a high-performance SerDes solution from eTopus, designed for versatile use across enterprise, data center, and 5G applications. Operating efficiently at data rates from 1 to 56 Gbps, this product exploits advanced DSP techniques for superior signal integrity and robustness. It accommodates wide insertion loss ranges of 10dB to over 35dB, thus ensuring reliable performance in challenging communication environments. Its architecture supports direct optical drives and quad/octal configurations, making it ideal for network interface cards, routers, and high-speed switches in a data center setup. The embedded DSP architecture is developed with eTopus's proprietary algorithms, which enable rapid SerDes tuning and performance optimization. The ePHY-5616 is also characterized by its low Bit Error Rate (BER), ensuring data reliability and integrity. Moreover, it supports multiple protocols, including Ethernet and PCIe, enhancing its integration potential in modern broadband networks.

eTopus Technology Inc.
TSMC
12nm, 28nm
AMBA AHB / APB/ AXI, Analog Filter, ATM / Utopia, D2D, Ethernet, Interlaken, Modulation/Demodulation, Multi-Protocol PHY, Network on Chip, PCI, SAS, SATA
View Details

HOTLink II Product Suite

The HOTLink II Product Suite is a powerful video transmission solution that enables secure and rapid data exchange for avionics applications. This suite by Great River Technology is designed to facilitate seamless high-speed digital communications, minimizing latency while enhancing the system's reliability in demanding environments. The suite encompasses a range of tools that streamline the development and deployment of HOTLink II systems, which are crucial for managing high-bandwidth data flows. It offers extensive support mechanisms through well-crafted documentation and robust simulation tools, aiding engineers in achieving optimized system performance and regulatory compliance. By leveraging the HOTLink II Product Suite, users can achieve improved data integrity and support for multiple video interfaces, ensuring the readiness of systems for various missions. This makes the suite a vital component for both military and civilian aerospace projects, offering extensive scalability and customization to suit specific operational needs.

Great River Technology, Inc.
AMBA AHB / APB/ AXI, Analog Front Ends, Cell / Packet, Graphics & Video Modules, HDMI, Input/Output Controller, Peripheral Controller, UWB, V-by-One
View Details

16x112G Tx Chiplet with Modulator and Driver

Designed for high-speed transmission, the 16x112G Tx Chiplet showcases superior integration with 16 channels, each operating at 112Gbps. It includes a modulator and driver within a single silicon unit, optimized for optical communication systems requiring high-speed, high-bandwidth data transfer. This sophisticated chiplet ensures seamless modulation of optical signals, supporting efficient driver control and optimized data transmission. The integrated design simplifies system architecture, reducing the overall footprint while maintaining exceptional reliability and performance. Its built-in digital control aids in managing complex signal processing requirements, suitable for diverse applications within optical networking infrastructures. Verifying its design through silicon-proven processes assures users of its capability to meet rigorous industry standards. The application of this chiplet spans high-speed data centers, telecommunications networks, and beyond, where its efficiency and performance are indispensable. The innovation behind its creation reflects Enosemi's dedication to advancing optical technology, offering clients robust and reliable tools to meet current and future communication needs.

Enosemi
AMBA AHB / APB/ AXI, Oversampling Modulator, RF Modules, Sensor
View Details

Chimera GPNPU

The Chimera GPNPU is a general-purpose neural processing unit designed to address key challenges faced by system on chip (SoC) developers when deploying machine learning (ML) inference solutions. It boasts a unified processor architecture capable of executing matrix, vector, and scalar operations within a single pipeline. This architecture integrates the functions of a neural processing unit (NPU), digital signal processor (DSP), and other processors, which significantly simplifies code development and hardware integration. The Chimera GPNPU can manage various ML networks, including classical frameworks, vision transformers, and large language models, all within a single processor framework. Its flexibility allows developers to optimize performance across different applications, from mobile devices to automotive systems. The GPNPU family is fully synthesizable, making it adaptable to a range of performance requirements and process technologies, ensuring long-term viability and adaptability to changing ML workloads. The Cortex's sophisticated design includes a hybrid Von Neumann and 2D SIMD matrix architecture, predictive power management, and sophisticated memory optimization techniques, including an L2 cache. These features help reduce power usage and enhance performance by enabling the processor to efficiently handle complex neural network computations and DSP algorithms. By merging the best qualities of NPUs and DSPs, the Chimera GPNPU establishes a new benchmark for performance in AI processing.

Quadric
All Foundries
All Process Nodes
AI Processor, AMBA AHB / APB/ AXI, CPU, DSP Core, GPU, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, VGA, Vision Processor
View Details

Apodis OTN Processors

The Apodis family of Optical Transport Network processors adheres to ITU-T standards, offering a comprehensive suite for signal termination, processing, and multiplexing. Designed to handle both SONET/SDH and Ethernet client services, these processors map signals to Optical Transport Network (OTN), empowering versatile any-port, any-service configurations. Apodis processors are notable for their capacity to support up to 16 client ports and four 10G OTN line ports, delivering bandwidth scalability up to 40G, crucial for wireless backhaul and fronthaul deployments. With a robust, non-blocking OTN switching fabric, Apodis facilitates seamless client-to-line and line-to-line connections while optimally managing network bandwidth. This adaptability makes the Apodis processors an ideal choice for next-generation access networks and optical infrastructures.

Tera-Pass
AMBA AHB / APB/ AXI, HBM, NAND Flash, PCMCIA, Receiver/Transmitter, SAS
View Details

USB PHY

The USB PHY offered by Silicon Library is engineered to provide seamless connectivity for USB-based devices. Designed to support USB 2.0 specifications, it ensures fast data retrieval and transfer, enhancing the efficiency of digital consumer products. This PHY solution integrates seamlessly into a variety of SoCs, providing an essential interface for USB connectivity. With a robust design, the USB PHY excels in providing reliable connections under diverse operating environments, making it ideal for integration into devices requiring high-performance data transmission. The architecture of the USB PHY emphasizes minimal power consumption while maintaining high data integrity, crucial for today’s energy-efficient designs. Incorporating advanced architecture, the USB PHY ensures compatibility with various process technologies, which facilitates ease of integration into existing designs. Its versatility makes it suitable for a broad spectrum of applications ranging from personal electronics to automotive systems.

Silicon Library Inc.
AMBA AHB / APB/ AXI, USB
View Details

NaviSoC

The NaviSoC is a cutting-edge system-on-chip (SoC) that integrates a GNSS receiver and an application processor on one silicon die. Known for its high precision and reliability, it provides users with a compact and energy-efficient solution for various applications. Capable of supporting all GNSS bands and constellations, it offers fast time-to-first-fix, centimeter-level accuracy, and maintains high sensitivity even in challenging environments. The NaviSoC's flexible design allows it to be customized to meet specific user requirements, making it suitable for a wide range of applications, from location-based services to asset tracking and smart agriculture. The incorporation of a RISC-V application microcontroller, along with an array of peripherals and interfaces, introduces expanded functionality, optimizing it for advanced IoT and industrial applications. Engineered for power efficiency, the NaviSoC supports a range of supply voltages, ensuring low power consumption across its operations. The chip's design provides for efficient integration into existing systems with the support of a comprehensive SDK and IDE, allowing developers to tailor solutions to their precise needs in embedded systems and navigation infrastructures.

ChipCraft
TSMC
800nm
20 Categories
View Details

DisplayPort Transmitter

The DisplayPort Transmitter is a highly advanced solution designed to seamlessly transmit high-definition audio and video data between devices. It adheres to the latest VESA standards, ensuring it can handle DisplayPort 1.4 and 2.1 specifications with ease. The transmitter is engineered to support a plethora of audio interfaces including I2S, SPDIF, and DMA, making it highly adaptable to a wide range of consumer and professional audio-visual equipment. With features focused on AV sync and timing recovery, it ensures smooth and uninterrupted data flow even in the most demanding applications. This transmitter is particularly beneficial for those wishing to integrate top-of-the-line audio and video synchronization within their projects, offering customizable sound settings that can accommodate unique user requirements. It's robust enough to be used across industry sectors, from high-end consumer electronics like gaming consoles and home theater systems to professional equipment used in broadcast and video wall displays. Moreover, the DisplayPort Transmitter's architecture facilitates seamless integration into existing FPGA and ASIC systems without a hitch in performance. Comprehensive compliance testing ensures that it is compatible with a wide base of devices and technologies, making it a dependable choice for developers looking to provide comprehensive DisplayPort solutions. Whether it's enhancing consumer electronics or powering complex industry-specific systems, the DisplayPort Transmitter is built to deliver exemplary performance.

Trilinear Technologies
AMBA AHB / APB/ AXI, Coprocessor, HDMI, Input/Output Controller, PCI, PowerPC, RapidIO, SATA, USB, V-by-One
View Details

AXI4 DMA Controller

The AXI4 DMA Controller by Digital Blocks is tailored for high data throughput in varied data set sizes across multiple channels, ranging from a single up to 16 in standard releases. It includes features such as independent read and write controllers for each channel and scatter-gather linked-list management for data transfers, ensuring efficient handling of memory and peripheral data. This controller supports customizable interfaces like AMBA AXI and offers numerous data width options, which aid in optimizing performance and minimizing hardware footprints. User configurable parameters and a robust test suite make this DMA controller adaptable and easy to integrate into diverse system architectures.

Digital Blocks
AMBA AHB / APB/ AXI, DMA Controller, SD, SDRAM Controller, SRAM Controller
View Details

Origin E2

The Origin E2 from Expedera is engineered to perform AI inference with a balanced approach, excelling under power and area constraints. This IP is strategically designed for devices ranging from smartphones to edge nodes, providing up to 20 TOPS performance. It features a packet-based architecture that enables parallel execution across layers, improving resource utilization and performance consistency. The engine supports a wide variety of neural networks, including transformers and custom networks, ensuring compatibility with the latest AI advancements. Origin E2 caters to high-resolution video and audio processing up to 4K, and is renowned for its low latency and enhanced performance. Its efficient structure keeps power consumption down, helping devices run demanding AI tasks more effectively than with conventional NPUs. This architecture ensures a sustainable reduction in the dark silicon effect while maintaining high operating efficiencies and accuracy thanks to its TVM-based software support. Deployed successfully in numerous smart devices, the Origin E2 guarantees power efficiency sustained at 18 TOPS/W. Its ability to deliver exceptional quality across diverse applications makes it a preferred choice for manufacturers seeking robust, energy-conscious solutions.

Expedera
12 Categories
View Details

eSPI Master/Slave Controller

The eSPI Master/Slave Controller from Digital Blocks is designed to comply fully with the Enhanced Serial Peripheral Interface (eSPI) specification, offering versatile control options for both eSPI and conventional SPI protocols. This controller can function flexibly as either a master or a slave in communication scenarios, integrating smoothly with various AMBA interconnects. Ideal for systems requiring robust serial communication, it provides reliable data transfer solutions with capability for assisting in energy-efficient computational tasks. This controller is adept for use in embedded systems and IoT devices where space and power efficiency are pivotal.

Digital Blocks
AMBA AHB / APB/ AXI, I2C, PCMCIA, RapidIO, USB
View Details

CANmodule-IIIx

The CANmodule-IIIx module enhances the foundation of Inicore's CAN IP offerings, supporting a substantial 32 receive and 32 transmit buffers. This controller meets the stringent requirements of the international CAN standard ISO 11898-1 and is built to accommodate demanding applications like automotive and industrial controls, where expanded message handling and prioritization are critical. The module's design utilizes technology-neutral HDL, ensuring broad compatibility with both FPGA and ASIC implementations. It benefits from on-chip SRAM utilization, optimizing memory handling processes and enabling efficient system integration with ARM-based SoCs through its AMBA 3 APB interface. This comprehensive integration support facilitates seamless integration with minimal latency and high throughput. Debugging and testing are reinforced with advanced features, including various looping modes and an error capture register, which provides insights into communication errors and message states. The mailbox-oriented architecture and provision for message filtering in the first two data bytes make the CANmodule-IIIx particularly advantageous for applications requiring reliable, high-volume data exchanges.

Inicore Inc.
AMBA AHB / APB/ AXI, CAN, CAN-FD, PCI, UWB
View Details

RISC-V Hardware-Assisted Verification

The RISC-V Hardware-Assisted Verification by Bluespec is designed to expedite the verification process for RISC-V cores. This platform supports both ISA and system-level testing, adding robust features such as verifying standard and custom ISA extensions along with accelerators. Moreover, it offers scalable access through the AWS cloud, making verification available anytime and anywhere. This tool aligns with the needs of modern developers, ensuring thorough testing within a flexible and accessible framework.

Bluespec
AMBA AHB / APB/ AXI, Coprocessor, CPU, Input/Output Controller, Peripheral Controller
View Details

Origin E6

Expedera's Origin E6 NPU is crafted to enhance AI processing capabilities in cutting-edge devices such as smartphones, AR/VR headsets, and automotive systems. It offers scalable performance from 16 to 32 TOPS, adaptable to various power and performance needs. The E6 leverages Expedera's packet-based architecture, known for its highly efficient execution of AI tasks, enabling parallel processing across multiple workloads. This results in better resource management and higher performance predictability. Focusing on both traditional and new AI networks, Origin E6 supports large language models as well as complex data processing tasks without requiring additional hardware optimizations. Its comprehensive software stack, based on TVM, simplifies the integration of trained models into practical applications, providing seamless support for mainstream frameworks and quantization options. Origin E6's deployment reflects meticulous engineering, optimizing memory usage and processing latency for optimal functionality. It is designed to tackle challenging AI applications in a variety of demanding environments, ensuring consistent high-performance outputs and maintaining superior energy efficiency for next-generation technologies.

Expedera
AI Processor, AMBA AHB / APB/ AXI, Building Blocks, Coprocessor, CPU, DSP Core, GPU, IoT Processor, Processor Core Independent, Receiver/Transmitter, Vision Processor
View Details

UDP Offload Engine (UOE)

The UDP Offload Engine is crafted to amplify data transmission by reducing CPU intervention in the data communication process. Specifically tailored for systems requiring accelerated UDP packet handling, this IP effectively boosts performance in applications needing minimized jitter and maximum throughput efficiencies without burdening the central processor. This offload engine is a critical component in environments where data flows need to be expedited, such as high-volume streaming and real-time communication applications. Its architecture supports extensive session management and high packet rates, maintaining efficiency and reliability in large-scale network deployments. By offloading UDP processes, it streamlines data pathways which, in turn, reduces computational delays, enhancing overall system dynamics. The seamless integration that the UOE offers makes it a preferred choice for organizations looking to enhance their networking stack while reducing operational costs due to its reduced dependency on traditional CPU processes.

Intilop Corporation
AMBA AHB / APB/ AXI, Cell / Packet, Ethernet, SATA
View Details

Bus Decoders

Decoder logic controls numerous targets based on input from the initiator. It determines/decodes which target component will handle the current bus transaction. It also produces error messages for empty addresses in the hierarchy.

Agnisys, inc.
AMBA AHB / APB/ AXI
View Details

Yitian 710 Processor

The Yitian 710 Processor stands as a flagship ARM-based server processor spearheaded by T-Head, featuring an intricate architecture designed by the company itself. Utilizing advanced multi-core technology, the processor incorporates up to 128 high-performance ARMv9 CPU cores, each complete with its own substantial cache for enhanced data access speed. The processor is adeptly configured to handle intensive computing tasks, supported by a robust off-chip memory system with 8-channel DDR5, reaching peak bandwidths up to 281GB/s. An impressive I/O subsystem featuring PCIe 5.0 interfaces facilitates extensive data throughput capabilities, making it highly suitable for high-demand applications. Compliant with modern energy efficiency standards, the processor boasts innovative multi-die packaging to maintain optimal heat dissipation, ensuring uninterrupted performance in data centers. This processor excels in cloud services, big data computations, video processing, and AI inference operations, offering the speed and efficiency required for next-generation technological challenges.

T-Head
AI Processor, AMBA AHB / APB/ AXI, Audio Processor, CPU, Microcontroller, Multiprocessor / DSP, Processor Core Independent, Processor Cores, Vision Processor
View Details

Secure Protocol Engines

Secure Protocol Engines are designed to significantly enhance network and security processing capabilities. This IP offers high-performance processing of network traffic with secure protocol applications. It includes efficient engines for SSL/TLS handshakes and algorithms such as MACsec and IPsec, enabling swift encryption and decryption, thus enhancing security for data centers and similar infrastructures. These engines help in offloading intensive cryptographic operations from CPUs, thereby optimizing performance and resource allocation.

Secure-IC
AMBA AHB / APB/ AXI, CXL, Embedded Security Modules, Ethernet, I2C, IEEE1588, Security Protocol Accelerators, USB, V-by-One
View Details

Avispado

The Avispado is a sleek and efficient 64-bit RISC-V in-order processing core tailored for applications where energy efficiency is key. It supports a 2-wide in-order issue, emphasizing minimal area and power consumption, which makes it ideal for energy-conscious system-on-chip designs. The core is equipped with direct support for unaligned memory accesses and is multiprocessor-ready, providing a versatile solution for modern AI needs. With its small footprint, Avispado is perfect for machine learning systems requiring little energy per operation. This core is fully compatible with RISC-V Vector Specification 1.0, interfacing seamlessly with Semidynamics' vector units to support vector instructions that enhance computational efficiency. The integration with Gazzillion Misses™ technology allows support for extensive memory latency workloads, ideal for key applications in data center machine learning and recommendation systems. The Avispado also features a robust set of RISC-V instruction set extensions for added capability and operates smoothly within Linux environments due to comprehensive memory management unit support. Multiprocessor-ready design ensures flexibility in embedding many Avispado cores into high-bandwidth systems, facilitating powerful and efficient processing architectures.

Semidynamics
AI Processor, AMBA AHB / APB/ AXI, CPU, Microcontroller, Multiprocessor / DSP, Processor Core Dependent, Processor Cores, WMA
View Details

ePHY-11207

eTopus's ePHY-11207 stands out in their SerDes lineup by achieving data rates up to 112 Gbps, a leap forward for scenarios demanding ultra-high bandwidth and low-latency communication. Constructed on a 7nm platform, this product is tailored for state-of-the-art applications in both enterprise and advanced data center environments. The architecture of the ePHY-11207 is conducive to handling extensive insertion loss ranges and high-sensitivity demands typical of contemporary optical and copper interconnects. Its adaptability is further enhanced by embedded proprietary DSP algorithms that permit fine-tuning of performance in sub-millisecond timeframes, a feature that assures operational stability even amidst jitter-inducing environments. In addition to backing numerous protocols such as Ethernet and PCIe, the ePHY-11207's low BER and extensive diagnostic capabilities make it a prime candidate for rapid deployment in high-density network settings. Such versatility not only supports robust infrastructure but also enhances overall throughput efficiency.

eTopus Technology Inc.
TSMC
12nm
AMBA AHB / APB/ AXI, Analog Filter, ATM / Utopia, D2D, Ethernet, IEEE1588, Interlaken, Modulation/Demodulation, Multi-Protocol PHY, PCI, SAS, SATA
View Details

MIPITM CSI2MUX-A1F

The MIPITM CSI2MUX-A1F is an innovative video multiplexor designed to manage and aggregate multiple video streams effortlessly. It supports CSI2 rev 1.3 and DPHY rev 1.2 standards, handling inputs from up to four CSI2 cameras and producing a single aggregated video output. With data rates of 4 x 1.5Gbps, it is optimal for applications requiring efficient video stream management and consolidation.

VLSI Plus Ltd
AMBA AHB / APB/ AXI, IEEE1588, MIPI, Receiver/Transmitter, RF Modules, USB
View Details

xT CDx

The xT CDx is a sophisticated tumor profiling solution designed to advance precision oncology care for solid malignancies. This assay uses next-generation sequencing to assess alterations in 648 genes, identifying single nucleotide variants, multi-nucleotide variants, and insertions/deletions. It also evaluates microsatellite instability status and serves as a companion diagnostic to explore potential treatment avenues according to specific therapeutic product labeling. Uniquely, xT CDx offers mutation profiling through samplings from both formalin-fixed paraffin-embedded tumor tissues and matched normal samples such as blood or saliva, enhancing diagnostic clarity and treatment direction for patients with solid tumors. The comprehensive report generated includes valuable insights that can inform the personalized treatment path for cancer patients.

Tempus Inc.
15 Categories
View Details

CANmodule-III

The CANmodule-III is a comprehensive CAN controller module that offers mailbox-based architecture. It meets the international CAN standard ISO 11898-1 and includes 16 receive buffers, each equipped with its own message filter, and 8 transmit buffers with a priority-based arbitration scheme. This configuration ensures optimal support for Higher Layer Protocols (HLP) like DeviceNet and SDC, which demand intricate application-specific features. Built with technology-independent HDL, the CANmodule-III integrates seamlessly into both ASIC and FPGA frameworks, fully utilizing on-chip SRAM structures for enhanced performance. An AMBA 3 Advanced Peripheral Bus (APB) interface simplifies the integration into ARM-based systems-on-chip (SoCs), guaranteeing zero wait-state interface performance. This module supports advanced features such as automatic remote transmission request (RTR) handling and configurable interrupt generation mechanisms. The design is fully synchronous and includes robust test and debugging capabilities—such as various loopback modes and an SRAM test mode—ensuring high reliability and ease of development. This versatile CAN controller offers a sophisticated solution for implementing reliable, high-performance CAN communications in diverse embedded systems.

Inicore Inc.
AMBA AHB / APB/ AXI, CAN, CAN-FD, PCI, UWB
View Details

GNSS VHDL Library

The GNSS VHDL Library from GNSS Sensor Ltd is designed to streamline satellite navigation system integration into FPGA platforms. This versatile library includes numerous modules such as configurable GNSS engines and fast search engines catering to GPS, GLONASS, and Galileo systems. Complementing these are special components like a Viterbi decoder and RF front-end control, ensuring comprehensive system integration support. Engineered to achieve maximum independence from CPU platforms, the GNSS VHDL Library is built upon a simple configuration file to deliver flexibility and ease of use. Users benefit from pre-built FPGA images compatible with both 32-bit SPARC-V8 and 64-bit RISC-V architectures. The library enables GNSS operations as a co-processor with SPI interface, supporting diverse external bus interfaces without requiring changes in the core library structure. The GNSS VHDL Library incorporates Simplified Core Bus (SCB) for interfacing, enabling interactions through a system-defined bridge module. This provides flexibility in design and ensures efficient data processing and integration with existing systems, simplifying the development process for both new and existing FPGA platforms. Whether enhancing current designs or developing new navigation solutions, this library equips developers with the tools needed for effective GPS, GLONASS, and Galileo integration.

GNSS Sensor Ltd
GLOBALFOUNDARIES, Samsung, TSMC
28nm, 90nm, 180nm
AMBA AHB / APB/ AXI, Amplifier, Bluetooth, GPS, Interrupt Controller, MIL-STD-1553, MIPI, Multi-Protocol PHY
View Details
Load more
Sign up to Silicon Hub to buy and sell semiconductor IP

Sign Up for Silicon Hub

Join the world's most advanced semiconductor IP marketplace!

It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!

Switch to a Silicon Hub buyer account to buy semiconductor IP

Switch to a Buyer Account

To evaluate IP you need to be logged into a buyer profile. Select a profile below, or create a new buyer profile for your company.

Add new company

Switch to a Silicon Hub buyer account to buy semiconductor IP

Create a Buyer Account

To evaluate IP you need to be logged into a buyer profile. It's free to create a buyer profile for your company.

Chatting with Volt