All IPs > Interface Controller & PHY > PCI
The PCI (Peripheral Component Interconnect) category within semiconductor IPs focuses on providing robust solutions for high-speed data communication between a CPU and peripheral devices. In today's technology-driven world, PCI semiconductor IPs are essential in ensuring efficient and reliable connections across a wide range of applications, from personal computers to enterprise servers.
Products within this category are designed to support various PCI versions, including PCI, PCI-X, and the more advanced PCI Express. These IP solutions include interface controllers and PHYs (Physical Layer Transceivers) that facilitate the seamless integration of PCI technology into new and existing systems. By enabling higher bandwidth and improved data transfer rates, these IPs are crucial for applications requiring rapid data processing and high-performance computing.
Utilizing PCI semiconductor IPs can significantly enhance the operational capabilities of systems, making them ideal for use in industries that demand superior data handling capacities, such as data centers, high-performance workstations, and network infrastructure. The versatility and scalability of PCI IP solutions allow designers to customize and optimize their products to meet specific architecture requirements and performance goals.
Moreover, PCI semiconductor IPs provide manufacturers with a competitive edge by allowing for rapid development cycles and reduced time to market. By leveraging pre-validated and highly efficient designs, companies can focus on innovation and strategic advancements while relying on proven technologies for foundational elements. This not only ensures compatibility and interoperability but also drives innovation in creating cutting-edge technology solutions for the modern era.
Primesoc's PCIE GEn7 IP is dual mode controller , supporting upto 128Gbps per lane data rate , which can work as root complex or as an endpoint. This is a soft IP which can support serdes and non serdes architectures and PIPE interface of 64bit and lanes configurable from 1/2/4/8/16.
Silicon Creations' SerDes Interfaces are crafted to handle high-speed data transmission challenges over varied processes, ranging from 12nm to 180nm. Addressing multiple protocols such as CPRI, PCIe, and SATA, these interfaces demonstrate flexibility by supporting data transmission speeds from 100 Mbps to beyond 32 Gbps. The architecture incorporates a host of advanced features including adaptive equalization techniques and programmable de-serialization widths, making it stand out in terms of performance and signal integrity even under challenging conditions. With ultra-low latency PMAs, they sustain excellent operational speed and efficiency, imperative for sophisticated communication applications. Moreover, Silicon Creations partners with leading entities to provide comprehensive solutions, including complete PCIe PHY integrations. This synergy ensures that SerDes Interfaces are fully optimized for operational excellence, delivering stable and reliable communication signals. With an emphasis on low power and minimized area requirements, they cater to burgeoning industry needs for power-efficient and space-conservative designs.
Panmnesia's CXL 3.1 Switch is a pivotal component in networking a vast array of CXL-enabled devices, setting the bar with its exceptional scalability and diverse connectivity. The switch supports seamless integration of hundreds of devices including memory, CPUs, and accelerators, facilitating flexible, high-performance configurations suited to demanding applications in data centers and beyond. Panmnesia's design enables easy scalability and efficient memory node expansion, reflecting their dedication to resource-efficient memory management. The CXL 3.1 Switch features a robust architecture that supports a wide array of network topologies, allowing for multi-level switching and complex node configurations. Its design addresses the unique challenges of composable server architecture, enabling fine-grained resource allocation. The switch leverages Panmnesia's proprietary CXL technology, underpinning its ability to perform management tasks across integrated memory spaces with minimal overhead, crucial for achieving high-speed, low-latency data exchange. Incorporating CXL standards, it is fully compatible with both legacy and next-generation devices, ensuring broad interoperability. The architecture allows servers to tailor resource availability by employing type-specific CXL features, such as port-based routing and multi-level switching. These features empower operators with the tools to configure extensive networks of diverse devices efficiently, thereby maximizing data center performance while minimizing costs.
The Multi-Protocol SERDES offered by Pico Semiconductor is a versatile solution capable of handling a variety of communication protocols. This series of SERDES includes a 4-channel configuration that supports data rates up to 32Gbps, designed for integration with XAUI, RXAUI, and SGMII. It is compatible with multiple process nodes provided by foundries like TSMC and GF, offering robust performance across different semiconductor environments. These SERDES are crafted to meet high-performance metrics, capturing speeds up to 16Gbps and 6.5Gbps across various models, with advanced versions reaching up to 32Gbps. This exceptional range not only ensures compatibility with current technologies but also prepares systems for future updates, sustaining high data throughput. By delivering reliable high-speed data transmission capabilities, the Multi-Protocol SERDES from Pico Semiconductor is integral for networking, high-speed computing, and data storage applications, where efficient and speedy data transfer is paramount.
The CT25205 is a sophisticated digital controller designed for 10BASE-T1S Ethernet communications. Compatible with IEEE 802.3cg, it integrates the PMA, PCS, and PLCA Reconciliation sublayers, making it highly suitable for standard cells and FPGA systems. This synthesizable IP core supports seamless integration into any standard IEEE CSMA/CD Clause 4 Ethernet MAC via MII, which enhances its versatility for a multitude of applications. Its embedded PLCA RS uniquely allows existing MAC implementations to adopt advanced PLCA capabilities effortlessly, ensuring an increase in functionality without hardware overhauls. In conjunction with other Canova Tech IPs, such as the CT25208 MAC controller and CT25210 topology discovery IP, it provides a complete solution for implementing 10BASE-T1S within Zonal Gateways System on Chips (SoCs) and microcontrollers. The amalgamation of these components offers a streamlined approach to developing efficient network communication protocols, paving the way for innovative uses in industrial and automotive sectors where reliable data transmission is critical. This IP is especially adept at working alongside standard OPEN Alliance 10BASE-T1S PMD interfaces, reinforcing its compatibility with established industry protocols. For those developing multi-drop Ethernet solutions, the CT25205 stands as a premier choice. Its design, which ensures adherence to IEEE standards while promoting enhanced reliability and performance, makes it an attractive option for a range of applications, from simplifying connectivity in industrial setups to fortifying communications in vehicular networks, underscoring Canova Tech’s commitment to technological advancement and innovation.
PCIE is a layered protocol high speed interconnect interface supporting speeds up to 128Gbps and multi lanes and links. The layers speci_ied in PCIE speci_ication Transport, Datalink, Physical layers (digital packet) are implemented in PRIMEXPRESS IP along with PIPE interface logic connecting to PHY and AXI Bridging logic to connect to applications. Features: • Supports PCIE Gen 7 draft Spec. • Supports Pipe 6.X Spec. • PCIE Gen 7.0 Core supports Flit and non – Flit Mode. • Supports X16, X8, X4, X2, X1 Lane Configuration. • AXI MM and Streaming supported. • Supports Gen 1, Gen 2, Gen 3, Gen 4, Gen 5, Gen 6, Gen 7 modes. • Data rate support of 2.5 Gbps, 5 Gbps, 8 Gbps, 16 Gbps, 32 Gbps, 64 Gbps, 128 Gbps. • PAM support when operating at 64Gbps/ 128Gbps. • 8b/10b,128b/130b,1b/1b encoding , decoding support. • Supports serdes and non – serdes architecture. • Optional DMA support as plugin module. • Support for alternate negotiation protocol. • Lane polarity thru register control. • Lane deskew supported. • Support for L1 states. • L0P Supported. • SKP OS add/removal. • SRIS mode supported. • No equalization support thru configuration. • Deemphasis negotiation support at 5GT/s. • EI inferences in all modes. • PTM, OBFF, MSI, MSIX, Power management and all message format supports.
This high-powered TCP Offload Engine aims to deliver superior efficiency by offloading TCP processing from the CPU. By integrating a MAC interface, it reduces processing latencies and broadens throughput, thereby optimizing network operations substantially. This IP suite maintains rapid data processing speeds and addresses a broad array of network optimization needs for today's high-demand environments. Optimized for high-speed networking environments, the TOE offers unprecedented latency reduction through its hardware-accelerated design. The integration of a refined MAC interface plays a crucial role in translating packet data into usable formats swiftly, a crucial factor in enhancing overall system performance, particularly in data-intensive industries. This technology’s edge lies in its ability to seamlessly deliver full data transfer acceleration. Its design caters to enterprises that prioritize low-processing overheads and need to maximize network efficiency without the traditional constraints of higher CPU usage. Thus, Intilop's 10G TCP Offload Engine represents a benchmark in high-performance data handling systems.
The Ethernet Real-Time Publish-Subscribe (RTPS) Core is designed to deliver complete hardware solutions for the Ethernet RTPS protocol. It stands out by providing reliable networking capabilities needed in environments that demand stringent real-time data exchanges. This core enhances data communication efficiencies by facilitating rapid publish-subscribe interactions within complex network ecosystems. Optimized for environments that require high data throughput and consistency, it ensures that data exchanges are executed with precision and timeliness. Its architectural elegance supports seamless integration into existing networks, promoting a resilient exchange of information crucial for operational continuity. This core is pivotal for ensuring robust communication frameworks in mission-critical systems where delays and data losses are unacceptable.
PCIE is a layered protocol high speed interconnect interface supporting speeds up to 128Gbps and multi lanes and links. The layers speci_ied in PCIE speci_ication Transport, Datalink, Physical layers (digital packet) are implemented in PRIMEXPRESS IP along with PIPE interface logic connecting to PHY and AXI Bridging logic to connect to applications. Features: • Supports PCIE Gen 7 Spec. • Supports Pipe 6.X Spec. • PCIE Gen 7.0 Core supports Flit and non – Flit Mode. • Supports X16, X8, X4, X2, X1 Lane Configuraon. • AXI MM and Streaming supported. • Supports Gen 1, Gen 2, Gen 3, Gen 4, Gen 5, Gen 6, Gen 7 modes. • Data rate support of 2.5 Gbps, 5 Gbps, 8 Gbps, 16 Gbps, 32 Gbps, 64 Gbps, 128 Gbps. • PAM support when operating at 64Gbps/ 128Gbps. • 8b/10b,128b/130b,1b/1b encoding , decoding support. • Supports serdes and non – serdes architecture. • Oponal DMA support as plugin module. • Support for alternate negoaon protocol. • Lane polarity thru register control. • Lane deskew supported. • Support for L1 states. • L0P Supported. • SKP OS add/removal. • SRIS mode supported. • No equalization support thru configuraon. • Deemphasis negotiation support at 5GT/s. • EI inferences in all modes. • PTM, OBFF, MSI, MSIX, Power management and all message format supports.
The ePHY-5616 is a high-performance SerDes solution from eTopus, designed for versatile use across enterprise, data center, and 5G applications. Operating efficiently at data rates from 1 to 56 Gbps, this product exploits advanced DSP techniques for superior signal integrity and robustness. It accommodates wide insertion loss ranges of 10dB to over 35dB, thus ensuring reliable performance in challenging communication environments. Its architecture supports direct optical drives and quad/octal configurations, making it ideal for network interface cards, routers, and high-speed switches in a data center setup. The embedded DSP architecture is developed with eTopus's proprietary algorithms, which enable rapid SerDes tuning and performance optimization. The ePHY-5616 is also characterized by its low Bit Error Rate (BER), ensuring data reliability and integrity. Moreover, it supports multiple protocols, including Ethernet and PCIe, enhancing its integration potential in modern broadband networks.
PCIE is a layered protocol high speed interconnect interface supporting speeds up to 128Gbps and multi lanes and links. The layers speci_ied in PCIE speci_ication Transport, Datalink, Physical layers (digital packet) are implemented in PRIMEXPRESS IP along with PIPE interface logic connecting to PHY and AXI Bridging logic to connect to applications. Features: • Supports PCIE Gen 7 draft Spec. • Supports Pipe 6.X Spec. • PCIE Gen 7.0 Core supports Flit and non – Flit Mode. • Supports X16, X8, X4, X2, X1 Lane Configuration. • AXI MM and Streaming supported. • Supports Gen 1, Gen 2, Gen 3, Gen 4, Gen 5, Gen 6, Gen 7 modes. • Data rate support of 2.5 Gbps, 5 Gbps, 8 Gbps, 16 Gbps, 32 Gbps, 64 Gbps, 128 Gbps. • PAM support when operating at 64Gbps/ 128Gbps. • 8b/10b,128b/130b,1b/1b encoding , decoding support. • Supports EP & RC. • Supports serdes and non – serdes architecture. • Optional DMA support as plugin module. • Support for alternate negotiation protocol. • Lane polarity thru register control. • Lane deskew supported. • Support for L1 states. • L0P Supported. • SKP OS add/removal. • SRIS mode supported. • No equalization support thru configuration. • Deemphasis negotiation support at 5GT/s. • EI inferences in all modes. • PTM, OBFF, MSI, MSIX, Power management and all message format supports.
The DisplayPort Transmitter is a highly advanced solution designed to seamlessly transmit high-definition audio and video data between devices. It adheres to the latest VESA standards, ensuring it can handle DisplayPort 1.4 and 2.1 specifications with ease. The transmitter is engineered to support a plethora of audio interfaces including I2S, SPDIF, and DMA, making it highly adaptable to a wide range of consumer and professional audio-visual equipment. With features focused on AV sync and timing recovery, it ensures smooth and uninterrupted data flow even in the most demanding applications. This transmitter is particularly beneficial for those wishing to integrate top-of-the-line audio and video synchronization within their projects, offering customizable sound settings that can accommodate unique user requirements. It's robust enough to be used across industry sectors, from high-end consumer electronics like gaming consoles and home theater systems to professional equipment used in broadcast and video wall displays. Moreover, the DisplayPort Transmitter's architecture facilitates seamless integration into existing FPGA and ASIC systems without a hitch in performance. Comprehensive compliance testing ensures that it is compatible with a wide base of devices and technologies, making it a dependable choice for developers looking to provide comprehensive DisplayPort solutions. Whether it's enhancing consumer electronics or powering complex industry-specific systems, the DisplayPort Transmitter is built to deliver exemplary performance.
The CANmodule-IIIx module enhances the foundation of Inicore's CAN IP offerings, supporting a substantial 32 receive and 32 transmit buffers. This controller meets the stringent requirements of the international CAN standard ISO 11898-1 and is built to accommodate demanding applications like automotive and industrial controls, where expanded message handling and prioritization are critical. The module's design utilizes technology-neutral HDL, ensuring broad compatibility with both FPGA and ASIC implementations. It benefits from on-chip SRAM utilization, optimizing memory handling processes and enabling efficient system integration with ARM-based SoCs through its AMBA 3 APB interface. This comprehensive integration support facilitates seamless integration with minimal latency and high throughput. Debugging and testing are reinforced with advanced features, including various looping modes and an error capture register, which provides insights into communication errors and message states. The mailbox-oriented architecture and provision for message filtering in the first two data bytes make the CANmodule-IIIx particularly advantageous for applications requiring reliable, high-volume data exchanges.
The ARINC 818 Streaming Core is designed to facilitate real-time conversion from pixel buses to ARINC 818 formatted Fibre Channel streams and vice versa. This core is optimized for aerospace applications where precise, high-speed streaming and data formatting are crucial. With this capability, it supports seamless integration into advanced aerospace systems like avionics displays. Capable of converting data efficiently, it alleviates the complexities associated with handling video streams in real-time, thereby ensuring that transmissions meet the high demands of military and aerospace objectives. By maintaining a strong focus on data integrity, the core helps achieve superior performance in data transmission, ensuring that critical systems maintain optimal operational readiness. The engineering behind this core provides an efficient bridge between different data formats, enabling robust communications across complex networks. The ARINC 818 Streaming Core reflects advanced design methodologies tailored for rigorous requirements, bringing about enhanced reliability and efficiency to the systems it serves.
The CANmodule-III is a comprehensive CAN controller module that offers mailbox-based architecture. It meets the international CAN standard ISO 11898-1 and includes 16 receive buffers, each equipped with its own message filter, and 8 transmit buffers with a priority-based arbitration scheme. This configuration ensures optimal support for Higher Layer Protocols (HLP) like DeviceNet and SDC, which demand intricate application-specific features. Built with technology-independent HDL, the CANmodule-III integrates seamlessly into both ASIC and FPGA frameworks, fully utilizing on-chip SRAM structures for enhanced performance. An AMBA 3 Advanced Peripheral Bus (APB) interface simplifies the integration into ARM-based systems-on-chip (SoCs), guaranteeing zero wait-state interface performance. This module supports advanced features such as automatic remote transmission request (RTR) handling and configurable interrupt generation mechanisms. The design is fully synchronous and includes robust test and debugging capabilities—such as various loopback modes and an SRAM test mode—ensuring high reliability and ease of development. This versatile CAN controller offers a sophisticated solution for implementing reliable, high-performance CAN communications in diverse embedded systems.
eTopus's ePHY-11207 stands out in their SerDes lineup by achieving data rates up to 112 Gbps, a leap forward for scenarios demanding ultra-high bandwidth and low-latency communication. Constructed on a 7nm platform, this product is tailored for state-of-the-art applications in both enterprise and advanced data center environments. The architecture of the ePHY-11207 is conducive to handling extensive insertion loss ranges and high-sensitivity demands typical of contemporary optical and copper interconnects. Its adaptability is further enhanced by embedded proprietary DSP algorithms that permit fine-tuning of performance in sub-millisecond timeframes, a feature that assures operational stability even amidst jitter-inducing environments. In addition to backing numerous protocols such as Ethernet and PCIe, the ePHY-11207's low BER and extensive diagnostic capabilities make it a prime candidate for rapid deployment in high-density network settings. Such versatility not only supports robust infrastructure but also enhances overall throughput efficiency.
InnoSilicon's 56G SerDes Solution provides a high-speed interface offering breathtaking transmission rates of up to 56Gbps per channel. Supporting both PAM-4 and NRZ modulation schemes, it adapts easily to various high-speed protocols to serve diverse applications like data center network systems and telecom infrastructure. This IP reinforces robust signal integrity and low power consumption, making it suitable for advanced ESD and BIST functionalities. Its flexible architecture meets modern network demands, ensuring future-proof customization opportunities.
The FC Anonymous Subscriber Messaging (ASM) Core serves as a full hardware implementation for the FC-AE-ASM protocol, optimizing network stack components through integrated label lookups, DMA controllers, and message chain engines. This IP core offers a sophisticated and reliable solution for military and aerospace communication systems. Intensely capable within high-demand environments, the ASM Core ensures secure and efficient processing of data streams, critical for time-sensitive deployments like those involving F-35 type interfaces. The dedication to high-speed data management and robust control systems sets a high operational standard. Delivering enhanced data throughput and streamlined handling, the core minimizes delays and maximizes operational uptime. It is indispensable for complex mission-critical scenarios demanding resilience and swift communication without compromising efficiency.
This engine features ultra-low latency FPGA IP, providing a robust TCP Offload in networking systems. The integration includes MAC, PCIe, and Host Interface, ensuring sector-leading performance with minimal latency. Built on a background of efficient data transfer protocols, the system enhances throughput while reducing CPU overhead, which is particularly advantageous for high-frequency trading or real-time applications. Characterized by its ultra-low latency capabilities, the IP facilitates enhanced data handling that allows for immediate processing, making it ideal for data-heavy environments like data centers and financial services. The integration of a MAC interface alongside PCIe provides a cohesive solution that rapidly processes network traffic, addressing both data-heavy and computationally demanding tasks. Designed for environments demanding reduced latency, this IP underscores Intilop's commitment to cutting-edge data solutions. It accommodates concurrent sessions with high-speed data throughputs, thereby minimizing the computational load on conventional processing units and achieving execution speeds that are unparalleled in the market.
YouSerdes by Brite Semiconductor is a versatile multi-rate serializer/deserializer solution, capable of handling data transfer speeds from 2.5Gbps to 32Gbps. It is known for its superior performance, compact area usage, and power efficiency among its peers. The IP is designed to accommodate a wide array of interfaces, including but not limited to PCIe Gen 4.0/3.0/2.0/1.0, USB 3.1/3.0, and various SATA and XAUI implementations. Its architecture supports dynamic reconfiguration, allowing flexible channel arrangements and optimal resource utilization. The core design of YouSerdes optimizes the use of high-performance physical layers to ensure reliable data throughput across different applications. The solution features internal clock generation that eliminates the need for additional components, simplifying design efforts and reducing associated costs. Moreover, the architecture supports diverse protocols while maintaining compliance with industry standards, ensuring broad applicability. Designed for robust applications, YouSerdes is suitable for implementations in data centers, enterprise networks, and high-speed computing environments where efficiency and performance cannot be compromised. Its ability to seamlessly interface with multiple protocols in a single design makes it an attractive choice for multi-functional devices requiring adaptive data processing capabilities.
The DisplayPort Receiver is an essential component for receiving and interpreting high-quality audio and video data streams from a DisplayPort source. Compatible with the latest VESA DisplayPort standards, this receiver is built to handle both screen and audio signals with precision and minimal latency. It integrates sophisticated timing recovery features and boasts compliance with I2S and SPDIF audio protocols, ensuring that it remains versatile across different devices and applications. This receiver is designed to serve industries such as consumer electronics and professional video production, where reliability in signal reception and minimal downtime are crucial. Its capability to work seamlessly with multiple interfaces makes it a versatile asset for developers aiming to build robust multimedia systems, whether it be digital televisions, gaming devices, or large-scale video walls. Equipped to sync efficiently with various compilers on architectures like x86 and ARM, it guarantees that integration is both smooth and effective, validating its potential as a component for high-performance SoCs and FPGAs. The DisplayPort Receiver stands out with its real-time performance capabilities and ensures that the final output maintains high fidelity, catering to sectors that require uncompromised audio-visual quality.
The U9 Flash Memory Controller is a high-performance USB 3.1 solution designed to address the rigorous requirements of industrial applications. It features hyReliability™ flash management underpinned by hyMap® Flash Translation Layer, ensuring data integrity through advanced error correction capabilities. Configured for versatility, the U9 leverages a powerful 32-bit RISC core optimized for efficient flash memory handling. It provides AES 128 and 256 encryption, offering robust data security. Additionally, the controller includes 16 GPIOs, supporting protocols such as SPI, I2C, and ISO7816 for customer-specific applications, thereby expanding its flexibility. Providing a turnkey solution, the U9 includes firmware, a manufacturing kit, hardware for development and testing, and reference schematics. This controller is perfect for industries requiring efficient high-speed data transfer within the USB interface, ensuring consistent performance and reliability.
The ARINC 818 Direct Memory Access (DMA) Core delivers a complete hardware solution tailored for the efficient handling and transmission of ARINC 818 protocol data. It is specifically optimized for embedded applications, focusing on offloading formatting, timing, and buffer management. Engineered for speed and efficiency, this core simplifies the demanding task of managing high-rate data transmission by handling requests directly at the memory interface level. This uniqueness allows embedded systems to perform seamless data handling, thus enhancing overall system performance without the additional software overhead. In environments demanding precision and reliability, the ARINC 818 DMA Core stands out. Its ability to manage high data rates and reduce processing latency significantly enhances the overall throughput. This core is vital for improving the operability of sophisticated aerospace systems by ensuring data transactions are carried out smoothly and effectively.
The FC Upper Layer Protocol (ULP) Core is a sophisticated hardware implementation catering to the FC-AE-RDMA or FC-AV protocols. Designed to offer comprehensive network stack support, it includes features like hardware-based buffer mapping, DMA controllers, and message chain engines. Its pivotal role in managing high-efficiency data transactions ensures reduced latency and increased throughput, which are cardinal for applications within sensitive and precision-driven environments such as aviation and defense. The core provides a frame for constructing robust communication protocols adhering to strict industry guidelines. By integrating this IP, users can expect a significant boost in the performance of their network systems due to its efficiency in data handling and resource consumption. This core is integral to achieving seamless data operations, essential for maintaining readiness and performance in critical military operations.
The SerDes (Serializer/Deserializer) PHY offered by Terminus Circuits represents an integral component essential for various data communication technologies, where heightened bandwidth and speed are critical. This technology is crafted to accommodate diverse nodes, multiple foundries, and protocols, ensuring their solutions meet even the most demanding customer requirements. Features include low power consumption, minimal latency, and compact physical design, setting it apart for users demanding efficient SerDes technology. Terminus Circuits provides a comprehensive set of deliverables for their SerDes PHY, including user guides for integration, meticulous timing libraries, and Verilog code. This solution is adaptable to a broad spectrum of market segments, encompassing sectors like network communication, data storage, and enterprise networking, thanks to its seamless interoperability with existing controllers. With the ability to support diverse protocols such as PCI Express, USB 3.1, and various optical interfaces, the SerDes PHY provides an essential backbone for robust high-speed data exchange. The SerDes PHY is particularly noted for its capacity to handle conventional as well as emerging networking and storage protocols, with configurations that support variations across different data rates and standards. Such versatility in supporting bifurcation modes and progressive equalization techniques ensures optimal signal integrity and minimized data latency, catering to sophisticated applications requiring high-speed, reliable data transfer.
The BlueLynx Chiplet Interconnect facilitates seamless communication between chiplets, vital for modern semiconductor designs that emphasize modularity and efficiency. This technology supports both physical and link layer interfaces, adhering to the Universal Chiplet Interconnect Express (UCIe) and Open Compute Project (OCP) Bunch of Wires (BoW) standards. BlueLynx ensures high-speed data transfer, offering customizable options to tailor designs for specific workloads and application needs. Optimized for AI, high-performance computing, and mobile markets, BlueLynx's die-to-die adaptability provides system architects with the leeway to integrate a variety of packaging types and process nodes, including 2D, advanced 2.5D, and innovative 3D packaging options. The solution is recognized for delivering a balance of bandwidth, energy efficiency, and latency, ensuring robust system performance while minimizing power consumption. This IP has been silicon-proven across multiple process nodes, including advanced technologies like 3nm, 4nm, and 5nm, and is supported by major semiconductor foundries. It offers valuable features such as low latency, improved PPA (Power, Performance, Area), and industry-standard compliance, positioning it as a reliable and high-performing interconnect solution within the semiconductor industry.
The Multi-Protocol SerDes provided by Silicon Creations serves as an essential component for high-speed data interfaces across multiple industry protocols. This SerDes portfolio accommodates a vast array of protocols such as PCIe, JESD204, XAUI, and many more, facilitating broad compatibility with industry standards. Operating across 12nm to 180nm processes, these interfaces support data rates from 100 Mbps to an impressive 32.75 Gbps. Incorporating advanced features like programmable de-serialization widths and adaptive equalization, the Multi-Protocol SerDes ensures optimal signal integrity and performance even in demanding environments. The design includes jitter cleaner functions and employs low-latency optimized PMAs, delivering high precision and speed across various operational scenarios. This comprehensive adaptability ensures seamless integration into a wide range of applications from communications to high-performance computing. Supported by robust architectures, the SerDes enables enhanced efficiency and reliability, featuring low power consumption and reduced area overheads. With a commitment to customer satisfaction, Silicon Creations offers complete solutions through partnerships with leading controller vendors, cementing its products as high-value choices for modern electronic systems.
RegSpec is a comprehensive register specification tool that excels in generating Control Configuration and Status Register (CCSR) code. The tool is versatile, supporting various input formats like SystemRDL, IP-XACT, and custom formats via CSV, Excel, XML, or JSON. Its ability to output in formats such as Verilog RTL, System Verilog UVM code, and SystemC header files makes it indispensable for IP designers, offering extensive features for synchronization across multiple clock domains and interrupt handling. Additionally, RegSpec automates verification processes by generating UVM code and RALF files useful in firmware development and system modeling.
The PCIe Gen 4 interface supports a robust data rate for PCIe standards ranging from 1.0 through 4.0, achieving up to 16Gbps. With advanced CTLE boosting capabilities, it ensures signal integrity is maintained even at the higher frequencies demanded by modern data scenarios. This is crucial for enhancing bandwidth in data-intensive applications, providing the backbone for high-throughput environments like data centers.
The IFC_1410 Intelligent FMC Carrier in AMC form factor is an advanced modular platform accommodating a broad spectrum of functionalities within a compact framework. It is built on the powerful NXP QorIQ T Series processors alongside Xilinx Artix-7 and Kintex UltraScale devices, making it suitable for high-performance applications. This carrier board serves as a foundational component in system designs, promoting flexibility and ease of integration. Its multi-purpose architecture is tailored for various complex systems, enabling developers to extend the capabilities of their VME data acquisition and control systems far beyond traditional limits. By harnessing the synergistic potential of cutting-edge processor technologies and FPGA platforms, the IFC_1410 carrier board delivers exceptional processing power and scalability necessary for high-energy physics and many industrial applications requiring intense computational capacity.
As part of the advanced communication toolkit, the DSER12G addresses the need for robust data/clock recovery and deserialization at rates between 8.5Gb/s to 11.3Gb/s. Prominent in 10GbE, OC-192, and equivalent setups, it boasts ultra-low power design principles grounded in IBM's 65nm technology. Supporting high noise immunity and compact integration, it is a cornerstone in systems requiring efficient data management and communications interfaces across various digital infrastructures.
The FC Link Layer (LL) Core provides a complete and efficient IP solution for the Fibre Channel (FC) protocol, specifically engineered for the FC-1 and FC-2 layers. This core is designed for environments requiring high-speed and high-reliability data transfer across complex network architectures. This core facilitates seamless and reliable interconnectivity, ensuring data integrity across channels where data precision is vital. Its ability to manage extensive data loads while minimizing latency underscores its compatibility with rigorous military and aerospace applications. Integrating the FC LL Core into existing data infrastructures not only streamlines data processes but also enhances the scalability of the systems. This robust solution is essential for achieving operational success in technical realms where time and precision are critical components.
The Mil1394 AS5643 Link Layer Controller core is a hardware-centric full-network stack solution for the AS5643 protocol. Incorporating hardware-based label lookup, DMA controllers, and message chain engines, this core is crucial for military aviation systems, with compatibility modes available for notable platforms such as the F-35. Designed to bolster the efficiency of data transmission within aerospace network environments, the core enables precise control over data labeling and handling. It facilitates seamless data streaming and synchronization, thus ensuring the timely execution of command and control tasks, essential for operational integrity and safety. The application of this core extends to systems requiring robust communicative linkages under demanding conditions, providing comprehensive support for simultaneous data transmission across multiple networks. Through its application, it helps to secure consistent data flow and accurate real-time processing essential for advanced aerospace systems.
The Fast Access Controller (FAC) is a specialized solution developed by Intellitech, targeting efficient external flash programming in production environments. It is engineered to hasten on-board Flash memory programming, especially when configured with FPGAs, by utilizing a minimal bitstream through the 1149.1 bus. This IP is purpose-built for microcontroller, DSP, and CPU designers, aligning with the demands for enhanced design-for-test features and stronger programming performances in manufacturing processes.
SystemBIST is an advanced product offering from Intellitech that provides a plug-and-play solution for flexible FPGA configuration and embedded JTAG testing. It stands out with its proprietary architecture that allows for efficient, codeless configuration of field-programmable gate arrays (FPGAs) as well as built-in system testing capabilities. SystemBIST is designed to be vendor-neutral, supporting any FPGA or CPLD compliant with the IEEE 1532 or IEEE 1149.1 standards. This design enables robust anti-tamper measures and enhances system reliability by embedding JTAG test patterns directly into PCBs.
UTTUNGA showcases a PCIe accelerator card powered by Calligo's TUNGA technology, designed to elevate server performance across various platforms, whether x86, ARM, or PowerPC. Integrating Posit arithmetic into server architectures, UTTUNGA optimizes memory utilization and computing power, especially for HPC and AI applications. This card leverages the RISC-V instruction set to execute arithmetic in specialized Posit configurations efficiently. UTTUNGA's design facilitates the seamless integration of existing scientific libraries, empowering servers to offload tasks seamlessly and adopt Posit-based computing without extensive code modification. The accelerator card includes programmable gates, aiding in custom function integrations crucial for dynamic workloads and data types. Through UTTUNGA, Calligo demonstrates the seamless blending of conventional and new-age computing technologies, providing a versatile solution for modern data centers seeking enhanced operational capacities.
Designed for high-capacity data transfer over fiber optic networks, the SER12G facilitates 32:1 serialization for robust telecommunications. Capable of sustaining data rates from 8.5Gb/s to 11.3Gb/s, this module is essential for SONET/SDH and 10GbE operations, embracing IBM's 65nm CMOS technology. The design boasts low power requirements and integrates CMU and frac N PLL, making it suitable for both line and host side transmission, effectively enhancing data throughput and signal integrity.
The 1394b PHY core presents a bespoke design providing a comprehensive solution for the 1394b protocol's physical layer. With its standard PHY-Link interface, this core ensures efficient data transfer and management tailored for high-demand aerospace environments. Engineered to uphold high precision within data exchange systems, it supports operations encompassing extensive bandwidths and diverse potential applications, especially where communication reliability is imperative. Both encoding and decoding capabilities ensure superior quality of service and data integrity. Diverse aerospace platforms benefit from this IP, as it provides the advanced technology necessary for maintaining robust communication channels. It stands as a pivotal tool for organizations in the pursuit of seamless, high-speed data transmission systems that challenge traditional technology norms.
hellaPHY Positioning Solution is an advanced edge-based software that significantly enhances cellular positioning capabilities by leveraging 5G and existing LTE networks. This revolutionary solution provides accurate indoor and outdoor location services with remarkable efficiency, outperforming GNSS in scenarios such as indoor environments or dense urban areas. By using the sparsest PRS standards from 3GPP, it achieves high precision while maintaining extremely low power and data utilization, making it ideal for massive IoT deployments. The hellaPHY technology allows devices to calculate their location autonomously without relying on external servers, which safeguards the privacy of the users. The software's lightweight design ensures it can be integrated into the baseband MCU or application processors, offering seamless compatibility with existing hardware ecosystems. It supports rapid deployment through an API that facilitates easy integration, as well as Over-The-Air updates, which enable continuous performance improvements. With its capability to operate efficiently on the cutting edge of cellular standards, hellaPHY provides a compelling cost-effective alternative to traditional GPS and similar technologies. Additionally, its design ensures high spectral efficiency, reducing strain on network resources by utilizing minimal data transmission, thus supporting a wide range of emerging applications from industrial to consumer IoT solutions.
The NVMe Streamer is a robust IP core designed to enhance data storage performance by leveraging the capabilities of Non-Volatile Memory Express (NVMe) protocols. Integrated seamlessly into FPGAs, this core provides full accelerator NVMe host subsystem functionalities, ideally suited for Xilinx Zynq Ultrascale+ MPSoC and RFSoC devices. The NVMe Streamer offers complete programmability, allowing for CPU-less operations that maximize data throughput while keeping the processing system unobtrusive. This subsystem efficiently utilizes Xilinx GTH and GTY Multi-Gigabit Transceivers along with PCIe Hard IP Cores, making it fully compatible with PCIe Gen 1 through Gen 4 speeds. It supports various lane configurations to ensure optimal scalability and adaptability for high-speed data applications. Users benefit from full acceleration features, integrating host controller capabilities that simplify the setup and configuration of NVMe IO commands, significantly increasing performance and system responsiveness. The NVMe Streamer's applications are extensive, covering high-speed data acquisition and seamless sensor data recording. It is particularly advantageous for automotive and aerospace data logging, where reliability and efficiency are paramount. Its design enables lossless and accurate recording and streaming from solid-state drives (SSDs), offering advanced storage protocol offloading for modern high-bandwidth demands.
Bridging complex data communication requirements, the SERDES12G offers comprehensive serialization/deserialization capabilities, supporting 32:1 and 1:32 operations at speeds of 8.5Gb/s to 11.3Gb/s. With robust low power features, its design leverages IBM's 65nm technology, vital for SONET/SDH and XFI protocols in modern telecommunication systems. By integrating CDR and CMU, it provides high performance and stability, ensuring seamless data handling across a wide array of applications.
iCEVision is an evaluation platform for the iCE40 UltraPlus FPGA featuring rapid prototyping capabilities for connectivity functions. It allows designers to test key connectivity features, facilitating quick solution implementation and confirmation of design integrity. iCEVision supports common camera interfaces such as ArduCam CSI and PMOD, aiding in seamless integration into existing workflows. Compatible with tools like Lattice Diamond Programmer and iCEcube2, which are available for free download, iCEVision supports customization by allowing easy reprogramming of onboard SPI Flash. This platform is equipped with practical user interfaces to ensure simple connectivity and programming. Designed with a streamlined user experience in mind, iCEVision includes preloaded RGB demo applications and a bootloader for straightforward USB programming. This makes it an excellent choice for developers aiming to maximize productivity and ensure robust device connections.
Analog Bits' SERDES solutions are crafted to achieve high data transfer speeds with minimal power consumption, catering to demands for rapid and efficient data communication between semiconductor devices. These solutions support PCIe Gen3, Gen4, and Gen5 standards, enabling impressive bandwidth capabilities and extensive flexibility for integration in diverse applications. With a focus on reducing the power footprint while maintaining high performance, Analog Bits' SERDES solutions tap into advanced nodes such as 8nm, 7nm, and 5nm, proving their adaptability to ongoing technological advancements. These IPs are suitable for a range of applications, from mobile computing to enterprise data centers, demonstrating versatility. Built with robust multiprotocol capabilities, these SERDES solutions are fully compatible with leading communication standards like PCIe, SATA, and USB, ensuring easy integration into modern chip architectures. Their innovative designs minimize die area while maximizing throughput, making them a favored choice for high-speed data applications.
The Mil1394 GP2Lynx Link Layer Controller core is an advanced hardware implementation focusing on the efficient execution of the AS5643 protocol. With an integrated PHY-Link interface, this core supports streamlined connectivity in military and aerospace environments. This implementation facilitates sophisticated network linkages essential for complex systems requiring rigorous data handling and processing capabilities under high-demand conditions. The core ensures minimal latency in data transfer while maintaining high throughput necessary for operational excellence. Incorporating this core into existing systems can enhance overall network performance, providing the foundation for robust and reliable data exchanges. Its sophisticated design ensures consistent compatibility and operation within critical command and control structures, making it vital for mission-critical applications where reliability is non-negotiable.
The ePHY-5607 by eTopus is a versatile SerDes component operating at data rates between 1 to 56 Gbps, optimized for power, performance, and area (PPA) in a 7nm process environment. These features make it exceptionally suitable for modern data centers and AI applications, where space and energy efficiency are paramount. This component boasts superior BER and rapid Clock Data Recovery (CDR), ideal for high-speed optical and electrical interfaces. Its robust architecture is designed to minimize temperature-induced performance variations, which is crucial in maintaining consistent performance in data-dense environments. The ePHY-5607 enables scalable insertion loss, ensuring it can accommodate varying signal degradation scenarios in infrastructure deployments. Applications for the ePHY-5607 span enterprise networking and high-performance computing, addressing the critical needs for reduced latency and improved signal integrity.
The GL9767 is a PCI Express Rev. 2.1 compatible card reader controller, integrating multiple key functions within its compact design. It supports a wide array of SD memory cards, including SD, SDHC, SDXC, and the ultra high-speed SD 7.1 Express cards, providing reliable and swift data access. Equipped with multiple features aimed at reducing power consumption, the GL9767 embraces PCI Express ASPM, L1 sub-states, and Runtime D3 modes. This card reader controller is designed for optimal performance, supporting various application classes and speed classifications, making it versatile for devices that demand high storage capacity and speed. The GL9767 also features on-chip regulators and power switches to efficiently manage power distribution. Built to support modern standby modes for Windows, Chrome, and Linux OS, it allows seamless integration into diverse operating environments. Its support for enhanced power and performance management makes it suitable for high-performance consumer electronics.
Satellite Navigation SoC Integration by GNSS Sensor Ltd represents an advanced solution for incorporating satellite navigation capabilities into system-on-chip designs. This product integrates various global navigation satellite systems (GNSS) such as GPS, GLONASS, SBAS, and Galileo, ensuring comprehensive coverage and accuracy. The design is supported on ASIC evaluation boards that showcase its ability to work as a standalone receiver and tracker. This enables not only verification of GNSS quality but also supports its function as a universal SPARC V8 development platform. Additionally, its compact format ensures easy integration into existing systems, making it versatile for different applications. Technical features of this solution also include specific ASIC CPU functionalities like the LEON3 SPARC V8 processor compliant with 32-bit architecture and a clock speed of 100MHz. It includes memory management, high-speed AMBA bus connections, and debugging features, emphasizing robustness and performance. GNSS functionalities are extensive, comprising multiple I/Q ADC inputs and channels across various systems, ensuring rapid signal acquisition and processing. These abilities make it effective for fast signal detection and positioning accuracy. The engineering behind Satellite Navigation SoC Integration also provides sophisticated features like dual mode power supply, UART connectivity, and multiple antenna inputs, ensuring seamless data transmission and reception. Designed for simplicity and efficiency, it accommodates further hardware extensions and custom configurations, allowing users to tailor the solution to their specific needs. This turnkey solution leverages efficient power and memory management strategies to provide steady and reliable performance across diverse environments.
The Serial Front Panel Data Port (sFPDP) core provides complete hardware support for the ANSI/VITA 17.1-2015 specification, allowing full-bandwidth operation with a straightforward frame interface integration. Highly efficient in its design, the sFPDP core is developed to perform at high-speed transfer rates necessary for modern data-intensive applications. Its architecture is robust, permitting seamless incorporation into network systems requiring substantial data throughput capabilities. This core is tailored for scenarios demanding rapid data access and distribution, ensuring smooth operation across various platforms commonly employed in defense industries. The sFPDP core's ease of use and implementation complement its robust design, making it an ideal solution for organizations seeking to streamline their data processing capabilities without a significant increase in system complexity. The core enhances operational efficiency by enabling direct, high-speed connections, therefore addressing the crucial need for reliable data exchange in sensitive environments.
InnoSilicon's UCIe Chiplet Interconnect offers a state-of-the-art solution for high-speed chiplet data transfer, optimizing latency and power efficiency. Utilizing advanced connection technology, these chiplets enable massive energy-efficient data operations simulating single-board performance across multiple chips seamlessly. The interconnect allows for frictionless communications between smaller package dies, facilitated by InnoSilicon's proprietary chiplet IP. Ideal for data-heavy sectors such as high-performance computing, 5G, and AI, users benefit from agile and cost-saving scalability.
Credo's SerDes PHY offerings are designed to support custom ASICs with seamless integration capabilities. By utilizing Credo's advanced SerDes technology, customers can achieve standout performance in their next-generation ASICs. The integration of these PHYs allows for high-speed data transfer, making them essential for applications requiring reliable and efficient communication channels. Featuring a unique mixed-signal DSP architecture, these SerDes PHYs provide a balanced approach to performance and manufacturing process cost-risk management, ensuring a high return on investment. The distinctive patented architecture allows these SerDes to excel in various fabrication processes, delivering cutting-edge performance while maintaining power efficiency. This solution is particularly tailored for integration into Multichip Module Systems on Chip (MCM SoCs) and 2.5D designs, enhancing the capabilities of comprehensive system solutions. SerDes PHYs are indispensable for achieving long-reach connectivity, meeting the requirements of diverse data-intensive applications such as high-performance computing and AI-driven systems. Integration simplicity and scalability are key hallmarks of Credo's SerDes technology, supporting numerous lanes without compromising on performance. This flexibility is conducive to the rapid development of bespoke solutions catered to specific customer needs, offering significant advantages in terms of project adaptability and future-proofing capabilities. By deploying Credo’s SerDes IP, businesses benefit from reduced design complexity and the ability to push system performance boundaries without excessive power consumption.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!