The NeuroSense AI Chip, an ultra-low power neuromorphic frontend, is engineered for wearables to address the challenges of power efficiency and data accuracy in health monitoring applications. This tiny AI chip is designed to process data directly at the sensor level, which includes tasks like heart rate measurement and human activity recognition. By performing computations locally, NeuroSense minimizes the need for cloud connections, thereby ensuring privacy and prolonging battery life.
The chip excels in accuracy, significantly outperforming conventional algorithm-based solutions by offering three times better heart rate accuracy. This is achieved through its ability to reduce power consumption to below 100µW, allowing users to experience extended device operation without frequent recharging. The NeuroSense supports a simple configuration setup, making it suitable for integration into a variety of wearable devices such as fitness trackers, smartwatches, and health monitors.
Its capabilities extend to advanced features like activity matrices, enabling devices to learn new human activities and classify tasks according to intensity levels. Additional functions include monitoring parameters like oxygen saturation and arrhythmia, enhancing the utility of wearable devices in providing comprehensive health insights. The chip's integration leads to reduced manufacturing costs, a smaller IC footprint, and a rapid time-to-market for new products.